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 ABSTRACT

This paper presents a covariance compensation extended Kalman filter (CCEKF) based approach to

navigation using the Global Positioning System(GPS). The .covariance compensation is used to

decrease the effect of unexpected measurement and process uncertainties. This paper relies on a

detailed modeling of GPS using the data generated with constant velocity through Yuma Almanac.
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. INTRODUCTION

GPS is a satellite—based navigation system
that allows a user with the proper equipment
access to useful and accurate positioning infor—
mation anywhere on the globe{1,2]..

The : GPS satellites are uniformly distributed
in a total of six orbits such:that: there are four
satellites per orbit. This number of satellites
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and spatial distribution of OI‘bltS insures that at
least elght satellites can be 31multaneously
seen at any time from almost anywhere on
Earth. The GPS satellites circle the Earth at an
altitude of about 20, OOO(13 000 rmles) ‘and
complete two full orbits every day The GPS
satellites are not m a geostatlonary orblt but
rise and set two times per day. Each satelhte
broadcasts radio waves towards Earth that
contain information regarding its, position end
time. We can feceive this information 'by: using
special receivers, called GPS reeelvers, whxch
can detect ‘and decode this mformatlon By
combining _signals transmitted ; by several
satellites and received ’sir'nul't’aneoutsly, a GPS

receiver can calculate its position on the Earth.
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the
estimation problem in GPS has been a- fruitful

For nearly three decades, position

application area for state estimation. Many
problems have been solved, yet new and
diversified applications still challenge system
engineers. Various dynamic models{3,4] for
GPS positioning have been proposed over the
years, differing in theirAcomplexity. These
models include Position(P) model, * Position—
Velocity (PV)
Acceleration(PVA) model. Optimization filters
like extended Kalman Filter(EKF) have been
proposed to solve these estimation problems.
Since state space model is used, the EKF is
derived from process equation and non—linear
measurement equation having process noise and
The GPS

positioning problem is closely related to target

measurement noise respectively.

tracking problem. An earlier

tracking—trajectory estimation[5] deals with

tracking algorithms for ballistic reentry vehi— -

cles. .The estimation problem is a problem of
nonlinear estimation. “A rigorous treatment of
the nonlinear estimation requires the use of
stochastic integrals and differential equations.
An excellent paper[6] presents a survey of
préblems and solutions in the area‘of target
tracking. It discdsses design tfadeoffs,.perfor—
manée evaluation and techhiques for optimizing
state estimation problem. It also discusses four
approaches for tracking targets with sudden
maneuvers. Basing our research on this, we
have worked extensively on both modeling and
measurement uncertainties and have proposed a
CCEKF based approach to estimation which
also caters to unexpected process and mea—
surement uncertainties that may arise in the
system due to faulty ‘me‘asurements and also in
those cases where for a short period of time
the filter does not follow the dynamic model
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model and Position—Velocity—

reference on-

strictly i.e. sudden maneuvers. Surely, the EKF
algorithm can be improved by iterated EKF and

nonlinear second order filter as suggested in

"[1] and' [2) but they aid in optimality rather

than circumventing unexpected uncertainties.
_The remainder of this paper is organized as
follows. In the next section the GPS positioning

problem is formulated mathematically. This

'inCludes' dynarni¢ - ‘state process model and

measurement .model. Previous approaches for
enh.ancin'g‘ EKF are discuséed in section III
The proposed idea is discussed in section IV
and simulation study, which was performed in
order to assess the merits of the proposed
approach for enhancing EKF is presented in
section V. Concluding remarks are offered in
the final section. Appendix is provided at the
end to discuss different types -of dynamic
models.

I1. PSEUDOMEASUREMENT EQUATION

A GPS receiver fundamentally measures a

quantity called pseudorange p , which is a raw,

on—way range. measurement corrupted by a
user clock bias. Using either models or mea—

surements, p can be corrected for atmospheric

effects to produce corrected pseudorange. With
an approximate user location, the receiver can
then process these corrected pseudo—ranges(to
four or more satellites) to determine location in
a convenient coordinate system.

For GPS, the underlying coordinate system is
currently the 1984 World Geodetic System
(WGS—84), which is an accepted worldwide
geodetic coordinate system. It is usual and
convenient for the receiver to perform initial
calculations in an Earth Centered Earth Fixed
(ECEF) Cartesian coordinate system.
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The pseudo—measurement equation for GPS
for ith satellite can be defined as

F=V X =+ (Y —y P+ (Z -2}
+ AL, + cAt g, + cAtyy, + CA rop, 1) (O

where ¢At, is range correction due to receiver
clock offset, cAt,, is range correction due to
satellite clock offset, cAt,,, is range correction
due( to ionospherig error, cAttmpo Is range

correction due to tropospheric error, is ECEF

coordinate for the ith satellite and 7} are other

errors. For detailed information, see[1-2].

lil. PROBLEM DEFINITION

The problem is a state estimation problem,
i.e., assuming the state of the target evolves in

time according to the equation.
Cr+1 = Pile + Wy @

and the corresponding nonlinear measurement
vector is given by

e =H () +u 3

where w, and vy are input and measurement
noise processes respectively, one is interested
in estimating the target states (, based upon
all measurements p;=1,..., k. For details on

the dynamic models, see the appendix.
Eq. (2) is a.mathematical model represen—
tative of the target dynamics. The state vector

¢;, usually contains target position, velocity, and

sometimes acceleration as state variables along

with receiver clock offset error range. Eq. (3)

is the measurement equation relating state
variables to measurement variables. Here p;
contains at least four satellite ranges p,

measured from the receiver in addition to the
range errors resolved from Eq. (1).

The system(input) and measurement noise
processes w, and v, are assumed to be zero
mean white noise processes. The coVariance of
wy, Q is selected to compensate for modeling
errors. The covariance of the measurement
noise v, R should also be selected to present
all the excursions such as measurement biases,
false measurements, etc. .

Since hﬂ,((k) is nonlinear, we can linearize it
to the previous predicted state and solve it

recursively with EKF. In such case we define:

P: = B (Gye-1) .
+ Ji (Cklk—l)(gk - Ck{k—l) + v 4)

We can define pseudo—measurement as

Y = pp— Hy (Cu—1) + T (Cap— 1 )1 (5)
Hence,
Yo = (@ gp—1 )T 4+ 1 (6

The EKF algorithm then works by minimizing
the cost functional defined as:

My~ e (o= 1) Gl -
____1_ k kA\SKE—1 /5K (R,)
C(Cklk) -9 { +”<’dk_ CMk_l”(PH’:_‘)—d } (7)

The EKF equations are given as follows:
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Measurement Update Step(Filtering)

K= Py 1 1 (Ggeor ) P (G ™

+aR ] ~ ®)
Cip = C—1 + By (v — A (G 1) ) 9
Py = (Iy— K ($p—1)) Py (10)

Time Update Step(Prediction)

Pysip = dePudi + @y (1D
Crv 1l = Pl 12)

IV. RELATED WORK

The previous work done on targets with
sudden maneuvers modeled as systems with
abrupt changes for target tracking systems. In
[7], filter compensation using process noise
covariance is proposed. In this method, the
estimator's only concern is to maintain the
target in track(adequate position estimation
accuracy), this method can work quite well.
Basically it examines the "regularity" of the
filter residual vector.

7k=yk—H(§;dk_1) (13)
against its covariance matrix

Py = J(Gem 1) P 1 I () + R, 14
using (the chifsquare variable)

L= Py, ' a5

When Eq. (15) becomes too large one
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suspect that the target is maneuvering and the

covariance Q is increased so that 4 is reduced

to a reasonable value. This method therefore
has the combined feature of maneuver detec—
tion and filter compensation. This method is
based on the adaptive filter of Jazwinski and
shares great similarities with the method of
Mehra[8] which is a method for testing filter
optimality based upon the innovation process is
mentioned. If the test indicates that the filter
does not attain optimal performance, one then
proceeds to adjust Q and R so that the
covariance of the innovation process will be
consistent with that of filter prediction. This
method first computes a sampled correlation

function assuming that <. is ergodic over a

certain time interval, one therefore has

Cy= Elyvl ] = JP.J"+ R
i7=0
=L &NV P IT— KC)
7>0 (16)

and

)

18 r
;= 7{;1:21%%— 1 an

where P, denotes the steady—state error

covariance matrix and ¢ is the state transition
matrix of the . system dynamics. Using the
above equations and the steady—state Riccati
equation, Mehra gives a procedure for solving
for Q and R. There are situations in which
there is no sufficient number of independent
equations for solving them; Mehra then gives a
recursive procedure for solving for the filter
gain K directly. '

‘A more recent compensation filter[9] pro—
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posed is nonlinearity—compensation extended
Kalman Filter (NLCEKF). For NLCEKF, the cost
functional is defined as

Ik = e (Cae— 1 )il (&)"?} (18)

=1
C(Cltik) 9 { F G — Ck{k— 1“(p,4k_,)-1

The NLCEKF recursive Aequations are the
same as described in[8—12]1 except for the two

changes

Con = G 1+ XBo W — (G 1) Cag) (19)

and

Py = (Iy = 1" K I (Gaie— 1)) Prgge—1 (20)
Here

"={2—x§2§§§% @D

Let us consider the meaning of coefficient x
here. When x =1, Eq. (19) is the same as
EKF. If the cost function of Eq. (18) is the
minimum when x =1, this means that the
nonlinearity of the system is small, and that
error caused by linear approximation is small.
If the position ‘where the cost function of Eq.
(18) becomes the -minimum is distant from
x = 1, then the error caused by linear appro—
ximation is large. When x = 0, the state is not
updated even if new measurements are input.
This means that it is sufficient to search the
position where the cost function becomes the
minimum in the range of 0< x <2, with
x=1 at the center. The update value of the
error covariance matrix of Eq. (20) is n=1
when x =1, and 7 is decreased as X becomes

distant from 1.

V. PROPOSED COMPENSATION FILTER

We modify the EKF cost functional by inclu—

ding the compensation parameters to the cova—

riances as

R, =aR, : (22)
and

P = IGPka—l (23)

The cost functional for the modiﬁed case will

become
ca-{tnile} e
Herg |
F(Mk__l‘)‘cﬂkl‘l)z | (25)
and

where K is the reference residual between the
true measurement and predicted measurement
and 4 is the reference residual between the.
predicted states in consecuﬁve iterations.
These reference residuals can be ‘o’btained
empirically through hit and trial method or
alternatively, by obtaining the mean residual
value for last N consistent iterations. The
reason behind choosing & and 8 compensation
factors is to make the filter resilient towards
unexpected measurement and process uncerta—

inties.. These abrupt uncertainties can - occur
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either because of sudden maneuvers or faulty
measurements acquired for a brief time period.
The novelty in our proposed algorithm is the
adaptability of process error covariance matrix
P and measurement noise covariance matrix R,
which in the previous case was only restricted
to process noise covariance matrix Q. We em—
phasize that the method presented above is for
reducing performance sensitivities to noise.
Furthermore, the previous strategies might only
be useful for nonreal—time applications because
of the computational requirements: minimizing
1. in Jazwinski's approach; minimizing ¥ in the
case of NLCEKF, Mehra's computationally
intensive solution for optimizing Q and R.

VI. SIMULATIONS

In order to test CCEKF, synthetic data was
generated by using Yuma almanac maintained at
U.S Coast Guard Navigation Center[10}. From
this data, ECEF coordinates of satellites were
generated for 400 time steps with a sampling
period of 10 seconds. Initial position was taken
as 300,1280 latitude and longitude respectively
for an object present on the surface of earth.
Visible satellites were marked out. Circular
path was generated for 400 time steps with
the speed of object being 36 km/hr. PV model
is used for simulation. White guassian noises
were added as process noise and measurement
noise. Two simulations were done: first to test
the normal running of the filter and then to
test the presence of unexpected measurement
uncertainty. The reference residuals for the
later cases were selected empirically. Fig. 1
and 2 represent the results obtained for formal
case. Fig. 3 represents the comparison between
EKF, NLCEKF and CCEKF in the presence of
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10% unexpected measurement noise applied
between 100th and 150th time step. In the
presence of unexpected measurement and pro—
cess noise, o and B is used to adjust the
covariance by minimizing the effect of the
noise. Hence a shift in root mean square
error(RMSE) can be seen in Fig. 3. Here it
can also be seen that CCEKF outperform
NLCEKF algorithm in the presence of abrupt

measurement and process uncertainties.
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Fig. 1 Comparison between true position and
position estimated through CCEKF
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Fig. 2 RMS error between the true position and
position estimated through CCEKF
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Fig. 3 Comparison between EKF, NLCEKF and
CCEKF in the presence of unexpected
measurement uncertainty

Vil. CONCLUSIONS

For dynamic estimation in GPS, we have
presented many strategies for improving the
performance of extended Kalman filter and
have proposed covariance compensation exten—
ded Kalman filter which is quite effective in
those cases where the data is perturbed by
unexpected measurement and process uncer—
tainty. In those cases, conventional extended
Kalman filter does not perform well. Advantage
of covariance compensation extended Kalman
filter is the presence of compensation term <
and [ that reduces the effect of unexpected
measurement and process uncertainties. In
comparison to the previously implemented
compensation filters, we .propose a light weight
and cost—effective solution at the expense of a

tolerable computational burden.
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APPENDIX: DYNAMIC MODELS FOR EKF

We define

2

HL(C}.) = \/(Xi’wk)”f‘(yi = ?/k)2+ (Zi - Zk)2
+eAt, ' G

Now consider three rﬁodels for the analysis

of GPS position accuracy. These threé models.

cdrrespond to stationary, low dynamic and high
dynamic applicétions. In the case‘in which the
receiver is known to be stationary, an position
model(P) include only receiver position and
cl,ockv: bias states. In such case the state

transition matrix ¢, is an identity matrix. The

state vector is (_[zx ¥ 2 (cOt)l]” and

jacoblan is defined as:

ook opk 8pk |
ox oy 8z
b3 2
o0 Op 8Pk 4
éx 8y 9Bz
()= o ‘ @
¢ ook ook pk
-ox dy - 8z
opi Opt opi
L 9x 9dy oz

When the receiver is in uniform motionG.e.,
near constant Vélocity), performance is impro-—
ved by the inclusion of velocity states in the
model called Position—Velocity (PV) model. The
state vector is (o [Ti i 2% (cat,)]T. The

state transition matrix and jacobian are defined
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as:
14t0 0 0 00
0100000
0 0 12t0 00

¢,=100 01 000 &)
0 00 0 1At0
0000010
0000001

and

Jili=

4)

where At is sampling time. )

~When the velocity can not reasonably be
modeled as constant, then the acceleration
state can be added in each of the three
orthogonal directions cal‘ledk position velocity
(PVA) model. In such case the state transition
matrix is defined as

1
'

Lotpise 6 6 BC 6
R SR O S S SN
66 1 ¢ &E& C €
¢ ¢ 1;:%;”2 i ¢ GG

S E A Y Y U S S O N
N O R S (S WY (O (O (R
O O R
66t 66 ¢ €1 o ¢
G @ t ¢ [N A 1 G ~(5)
e ¢ 66 € €6 1]

The state vector is

Go=lzp Tz, Y vk Y 2 2 2p (€O ),

and jacobian is given as:
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