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Kinematic Models for Non—stationary Elliptic Region Boundaries
in Electrical Impedance Tomography

Umer Zeeshan Ijaz+ - Kyung—Youn Kim#*

ABSTRACT

In this study, we propose kinematic models for dynamic electrical impedance tomography (EIT)
shape estimation of regions of known resistivities based on extended Kalman filter (BKF). The EIT
inverse problem is formulated as a state estimation problem in which the system is modeled with the

state equation and the observation equation. We are especially interested in the estimation of shape
of air bubbles and conductive liquid in the industrial process pipelines. The proposed kinematic mod—

els are tested with computer simulations. From the simulations, we achieve a promising performance

of this approach.
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1. Introduction

In EIT, weak alternating currents are injected
into the object via an array of disjoint contact
electrodes attached on the exterior surface of
the object. The objective is to estimate the
resistivity distribution inside the object based
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on the voltage measurements that are needed
to maintain the currents.

Some of the applications of EIT include geo—
physics, nondestructive evalution, industrial
process monitoring, medical imaging etc. In
geophysics, EIT can be used for delineating
lithologic units(e.g., sands versus clays), mon—
itoring emplacement and performance of sub-—
surface barriers! permeable, flow—through type
as well as impermeable, mapping the position
of fluids such as water, mapping moisture con—
tent variation in space and time, detecting leaks

in surface and subsurface storage tanks etc.
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In many abplications the object is known to
consist of a few separate subregions with con—
stant resistivities. In these situations the shape
estimation techniques are the desired frame—
work for the reconstruction. In shape estima-—
tion techniques the reconstruction is defined in
terms of the shape of the subregion boun-—
daries. With a shape parametrization we have
less tnknown parameters compared with the
traditional pixelwise parameterization and hence
it leads to less ill-posed estimation problem
and improved accuracy in reconstructions.
Latest research in shape estimation techniques
are given in [1],[21,{3],14], [5] and [6].

There are two types of boundary estimation
problems. For the first case, object domain is
divided into two disjoint regions which are
separated by an open boundary [7]. In the
other case the anomalies are enclosed by the
background substance. Here the problem is the
recovery of closed boundaries of subregions
that .are embedded in the object domain [8]. In
[3] ‘and [8] researchers have expressed the
shape of interface in terms of Fourier series
whose coefficients are the unknowns to be
estimated. In this paper we propose kinematic
models for state estimation. The object domain
is :assumed to consist of two disjcint regions,
for .example an air bubble in water. An im—
iportant topic is the use of more appropriate
«evolution models in shape estimation. Such an
-evelution model can be constructed using first—
and second—order Markov models. In this pa—
'per ‘we give extensive simulations for different
kinematic models incorporated into state esti—
‘mation.
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2. Expression of Phase Boundaries

We assume that the outer boundary of the
body, that is, 82 is known. If the phase boun—
daries of the object are sufficiently smooth,
they can be approximated in the form

z(s) V_ o (720%(s)
o) =3 F 2] W
where Ci(s)(1=1,2,...,8) is the boundary of
the lth object, § is the number of the objects
in the body, 6,(s) are periodic and differ—
entiable basis functions, and N, is the number
of basis functions. In this paper, we express
the phase boundaries as Fourier series in the
two—dimensional coordinates with respect to
the parameter 8, that is, we use the basis

function of the form

() = 1

1z ., n p—
On(s)=sm(27r-53),n—2,4,6,...,N9—1 )

6 (s) = cos(zwﬁﬁg-l—ls), n=1,3,5,..., N,

where s € [0,1]and o denotes either z or y.
Furthermore, using the expansion Eq. (1), the
boundaries are identified with vector v of the

shape coefficients, that is,

O G- S0 S SO 4
where v € R*Y For more details on the ex—

pression of phase boundaries, Forward Model
and implementation issues in FEM, see [9].
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3. Formulation of Dynamic Model

In general, the evolution of the boundary
vector v is related by the following nonlinear
mapping;

i1 = 9 (%) + wy ‘ (4)

where v is the state vector (the boundary
representation) at time kT. g, is a function
(9, 1 R¥MR*N0)  defining the state transition
from time &7 to (k+1)T, where T is the
sampling period (measurement interval between
successive application of current patterns), and
w; is assumed to be white Gaussian noise.

Here, the state equation is assumed to be of
linear form

Yesr = Fontw, (5)

2SN, iti
RISNX 25N 1o the state transition

where F, €
matrix at time kT, Usually in EIT there is no
a priori information on the time evolution of
the boundary vector so that we take Fp=1
(the identity matrix). The rate of time evolu—

tion is governed by the covariance matrix @.

Considering the observation model, let v € RL,

be defined as
ue= (uh, up, ..., ug)” ®

be the actual surface measurement voltages
induced by the kth current pattern. Then the
relationship between the boundary vector and
measured voltages can be described by the
following nonlinear mapping with a measure—
ment error

= hy () + T ' (N

where h; is a function (h;R**“—R*) defining

the relationship between the boundary vector
and measured vector and the measured vol—
tages for the kthe current pattern. The meas—

urement error v, € R® is assumed to be white
Gaussian noise with the covariance R,. Li‘nea—
rizing Eq. (7) about the predicted (time—up—
dated) state -1, described later (section

3.1), we obtain

;Lk =k (Vi em1) F I aaz1)- (k=Yg 01) (8)
+HO.Ts +u,

where H.0.Ts represents the higher—order

terms which are assumed to be additional white

Gaussian noise, and J (vy,_) € R¥**" i the

Jacobian matrix defined by

Je(rier) = %Lcmm (9)
Let's define a pseudo—measurement as

Y = ;‘k_hk (Ve e=1) F 5 =) Yoy 51 (10

Then we can obtain the following linearized
measurement equation:

Y= (M pm1) Mt 11
where Z‘k e rY is composed of the measure—

ment error and linearization error with known

covariance as Bj.
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3.1. Extended Kalman Filter Formulation

In Kalman filtering we estimate the state
vector 7, based on all the measurements taken
up to time kT. With the Gaussian assumptions
the required estimate is obtained by minimizing
the cost functional which is formulated based
on the above state and measurement equations.
Eq. (5) and Eq. (11), respectively.

1
R(7.) :'5'“ %Yyt | |(C‘“__’)-|
14— Ogis )Wl | g el | ROp—7) 1]
12)

where  |ldl;  denotes =zTAz, o and

25 2 t g
R € R*N*N re the regularization parameter

and regularization matrix, respectively, v* is an
a priori guess for the boundary representation,
and Cyjp_y € R¥MX 2N o the time—updated

error covariance matrix, which is given by

Cklk~l:E[('Yk_'7k|k—l)(’7k_’7k|k..])7‘] (13)

and measurement matrix H, € RE 25N 25N,

The first two norms in Eq. (12) refer to the
weighted norms, having as weighting matrices
the inverse of the covariances. The third term
on the right—hand side of Eq. (12) is the reg—
ularization term which is included to mitigate
the ill-posedness of the given problem. We
used the generalized Tikhonov regularization
under a smoothness assumption in constructing
the regularization matrix (R), with the regula—
rization parameter o chosen empirically. If we
define the augmented pseudo—measurement

- L+ 28N, .
y, € RET%) a4 measurement matrix
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v= [ \/?xy;h* ] (14)
H = ( "k(\’;%;”) (15)

then the cost functional Eq. (12) can be re-
arranged as

1
R(y) = -2'“ [Ye= Wy b | ‘(c‘“»‘).vn 16

+1 1 ys— Byl fri)

o I, & RUF25N)x (L+25N)
k

wher is a block diago—

nal matrix defined by
I, = Blockdiag [R,, Ligy,| 1an

Minimizing the cost functional Eq. (16) and
solving for the updates of the associated co—
variance matrices, we obtain the recursive ex—
tended Kalman filter algorithm, which consists
of the following two steps in [10}:
time update (prediction)

Vestik = Fihir (18)
Coprp=FiCyn (F)T+ @, 19)
measurement update (filtering)

Gk+1|k= Ck-uw(HkH)T[Hkqu 1|k(Hk+1)T
+ Ty, 7

(20)
Yet11k41 = Ver1) £+ Grpr (;Jku ~ Hi Yy 1) Q1)

Ck-a«nmd = ([_’SN,,"' Gk+1Hk-;v1 ) Ck+1|k (22)
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Fig. 1 Simulation Scenarios: (a) Bubble is
moving with constant velocity; (b) Bubble is
expanding with constant velocity; (c) Bubble is
moving with constant acceleration; and (d)
Bubble is expanding with constant acceleration.
Transient boundaries are superimposed onto
each other.

4. Numerical Results with Kinematic
Model

In order to evaluate the performance of the
proposed approach, we have considered four
different scenarios for phase boundaries as
shown in Fig. 1. The elliptic object undergoes
a transient change in a circular domain (30cm
in diameter) after each current pattern
(At=0.01sec). The trignometric current pat—
terns were injected into the domain. Reading
for 3 image frames were acquired (93 current
injections). In all the scenarios, the object and

e ~ background resistivities were set to
250 % 10%Q2¢m  and 25092¢m  respectively, so
that the contrast ratio between the object and
the background is 10°:1, We assumed a very
high contrast ratio here since the final goal of
this research is to estimate the boundaries of
bubbles in a liquid. Here, we adopt the kine—
matic model (KM) for the state equation Eq.
(5), which takes into account the first— and
second—order derivatives of v of the shape of

coefficients. Originally, the KMs were devel—
oped for the target tracking field [11] to esti—
mate the maneuvering target, in which the ac—
celeration and the jerk are considered as white
Gaussian noise for the first— and second—order
kinematic model, respectively.

For a bubble moving with constant velocity
(Simulation 1), the required state vector, state
matrix and measurement matrix are as follows:

T " . % T
il B Ut O Al (23)
1At0 0 000
0100000
00 1At000
Fo=[0 001000 (24)
0000100
0000010
0000001
J&ll)()-)s:l"

2) 0 il 3) Jil i) Ji“ 5) J&l .6)
LRI SR S STR U
H = k, (25)

J‘?"l) 0 J?“) 0 J&ﬁ&) Jizf» 4)]3}1 5) )S(zn .6)

For a bubble expanding with constant velocity
(Simulation 2), the required state vector, state
matrix and measurement matrix are as follows:

; . . T
v=Uap b A % gt g A1 ] (26)
100 0 00 O
010 0 00 O
001 At00 O
F,={000 1 00 0 270
000 O 10 O
000 0 01 At
000 O OO0 1

JED AR A8 g gD sy gy 6) 0
e B R 0 0 T I 0 | gy

J(kzs:zll)‘]gz.:) .)23:2.3) 0 ‘](37 1) ](3)5) Jm 6 ¢

For a bubble moving with constant accel—
eration (Simulation 3), the required state vec—

29



PH Xk ORtz - H F o

tor, state transition matrix and measurement
matrix are as follows:

. " . . T
y=Dat b At A A AR o ]

(29)
4&%—&200 0 0000
01 At 00 0 0000
o0 1 00 o0 0000
oo o lAt}Q-AtQOOOO
Fi=loo 0 01 “at 0000| B0
oo 0o oo 1 0000
oo o 00 o 1000
oo o 00 o0 0100
{00 o 00 o0 0010
loo o 00 o 000T1]
TJE0 0 0 Ab2) 0 0 J3 g gLs) g(Le)
g=| TET 00 A0 0D JED D S0

’ ‘)&3&,1) 00 J}rs'z.z) 00 Jscs.z's)']fé'” Jg'z,s) Jﬁi:l,ﬁ)

(3D

For a bubble expanding with constant accel—
eration (Simulation 4), the required state vec—
tor, -state transition matrix and measurement
matrix are as follows:

Rt e U R o LRI L i o |

(32)
T1000 o 0000 0 ]
lo1o00 o o000 o
iaoo1/.xt%m20000 0
0001 At 0000 0
o000 1 0000 o
Fe=lwoo 0o o 1000 o |G
10000 0 0100 o0
o000 o 001At%At‘
9000 0 000 1 At
0000 0 0000 1 |

: qg'ﬂ) ']Sc]‘?) Jil,s) 0 0 ‘41.4) JQ"") JS}'G) 0 0
Bm| TR 00 R0 B0 0 0 0

..]Sca?z.x) Jﬁs'z,z) ']Scs.“) 00 Jf-g'“]fé’s) JS:S.Q’G) 0 0

(34)
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Table 1. Extended Kalman filt;er parameters.

Simulation|Simulation Simulation Simulation
1 2 3 4

o i kg Lo Lo

R, | 2001, | 2001, | 200I, | 200I,

Go L 2 fo Lo

The EKF parameters used in the simulations
are shown in Table 1 The regularization pa4
rameter @ was set to 0.1, Furthermore, in all
simulations, zero—mean Gaussian noise was
added to the calculated voltages to generate
noisy measurements; the noise level was set to
be 1% of the corresponding calculated voltages.
The reconstruction results for the simulations
are shown in Fig. 2 in which the columns rep—
resent the true and estimated profile after 15
current injections. In Fig. 3 root mean square
error (RMSE) comparison for region boundaries
is done between KM and random—walk model
for a monte—carlo simulation of 10 runs for
each scenario. From the results it should be
pointed out that the estimation performance of
the EKF with KM is better than random—walk
model in most cases. For the case when bubble
is moving with constant velocity, there is a
significant difference in RMSE values of KM
and random—walk model between 40tk and
80th current patterns and for the bubble ex—
panding with constant acceleration, there is a
significant difference between 35th and 75th

current patterns.
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Fig. 2 Reconstruction results with KMs: (a)
Bubble is moving with constant velocity; (b)
Bubble is expanding with constant velocity; (c)
Bubble is moving with constant acceleration;
and (d) Bubble is expanding with constant
acceleration. Solid line represents the true
boundary whereas the dotted line represents
the estimated boundary.

5. Conclusions

In this paper, we have addressed a special
class of the EIT inverse problem, in which po—
sition and shape of the objects (bubble in this
case) were the unknowns to be identified while
resistivities of the objects are known a priori.
The boundary of the object was formulated as
truncated Fourier series, and time—varying
Fourier coefficients were estimated with the

aid of extended Kalman filter, following the
voltage measurements corresponding to each
current pattern. Different kinematic models
were considered for modeling different behav—
iors of air bubble. Comparison was done with
conventional random—walk model to evaluate
the performance.
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Fig. 3 RMSE comparison with monte—carlo
simulations of 10 runs: (a) Bubble is moving
with constant velocity; (b) Bubble is expanding
with constant velocity; (c) Bubble is moving

‘with constant acceleration; and (d) Bubble is

expanding with constant acceleration. Solid line
represents the RMSE with KM whereas dotted
line represents the RMSE with random—walk
model.
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