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CHAPTER 1
INTRODUCTION

In this paper we would like to study finite group actions of the
moduli space of self-dual connections.

Iet G be a finité group. Let M be a simply connected, closed
and smoofh Y-manifold with a positive definite intersection form, and a
smooth action of G on it. let #: E +M be a quaternion line bundle
with instanton number one and with a G-action on E through bundle iso-
morphism such that =« 4is a G-map. The moduli space M which is the set
of self-dual connections.on E modulo the group 2; of gauge transforma-
tions, is.a G space but may not be a manifold, when we start with G-
invariant metric 6n M, because of nonvanishing cohomology groups and
reducible connections, To make M a manifold, Donaldson used a compact
perturbation of a Fredholm map, and Uhlenbeck found generle metrics on
M. We cannot use these methods directly to make M a G-manifold, because
the perturbation is not a G-equivariant and Uhlenbeck's method need not
yield a G-invariant metric.

We can regard this G-~action on this bundle as a subgroup of a
generallzed gauge group. From this G-action on the bundle, we can define
naturally a G-action on the set C of all connection, fI, nané), and

nn(E) where j?E is the assoclated Lie algebra bundle of E, then G




acts on €A and the moduli space M.
There are two methods to transform this mysterious G-moduli space

into a smooth G-moduli space '.'writh some singularities.

(A) First Method: We can find a G-invariant metric on M such that the
Tixed point set MG is a manifold.  We will use the Unhlenbeck

argument [14] which was used to find generic metrics on M.

THEOREM 5.6: There exists é:.;:Baire set in the G-invariant metrics

which are obtained by averaging, such that H° 1is a smooth manifold in

the moduli space M of irreducible self-dual connections.

To see the local G-structure of M at each self—dual G-invariant
comnection v e MG, we will use the Atiyah-Singer G-index Theorem (1],
(3] for a G-invariant elliptic complex:

o——-—>-of§)<—-v—snl )——d~v—>2()——>0
& g 57 e (&
where &' is the formal adjoint of V.
From now without mention about; G, we will assume G = ¢

A, n
1}i§1 on M, where

<h>.,

2

n

Suppose that the G-lixed point set T = {Pi}ii1 u T
)

Pi is an 1solated fixed point and T 1 is a Riemann Surface with genus

)\i.

THEOREM 4.13. If a connection 9 1is irreducible (reducible), G-

invariant, in M, h(v) = g(v), (hg)2 = 41 for some gauge transformaticn g,

then we get
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where A = ny + I x(T ") - sign(ti:M), sign = signature, HVi' means the

i=1

+1 eigenspace of hg.

THEOREM 4.13'. If v be a self-dual irreducible comnection and

h(v) = g(\?),(l’lg;)2 = -1 for some gauge transformation g, then we have

L1 2 _1

dim Hy - dim K = § (10 + 4)
1 1

dim Hy - dim B, = T (10 - &)

~

£
where H+ is the - +1 elgenspace of hg.

THEOREM 4.13". Let Vv be a self-dual reducible connection and

g(v) = h(v) for some gauge transformation g & Pg- we_get
- 1 2 1
dim Hv+ - dlm ”\7+ =5 (14 + A)

]

2 _ 2 1
dim Hv“ - ddim Hv i (10 - A)

~

* :
where H+ is the +1  eigenspace of glhgge, for some gl,gee r

v

If we consider the end part of the modull space [19], [30] and

Theorem 4.13 and Theorem 4.13' » then we have as by product,
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| g
THEOREM 6.6. The value A=n, + £ (T ) - sign(h:M) = 2.

|

Also we can get this value of A from the Lefschetz fixed point
Theorem.

-Using these index calcuiation, we warit to perturb the map
-,b C/g-’-C xg Q%C}E) given by : p(v) = ‘-(V,Rv_) to one transverse to the
zero section. This Fredholm G-map ¢ is locally equivalent to the sum
of a linear map and a nonlinear map with finite dimensional range G-
equivariantly.

If we use Theorem #.13 and Theorem 4.13", then we get

THEOREM 6.7. Suppose that Vv .is G-invariant, reducible self-dual

in M, then there is a G-eguivariant perturbation around v in B such

that the perturbed moduli space has a neighborhood at v which is an

2
open cone on Cp .

If we use Theorem 4.13 and Theorem 4.13', then we obtain

THEOREM 6.10. If v 1is G-invariant, irreducible in M, then

there is a G-invariant smooth compact perturbation around v such that

the perturbed new modull space has a smooth 5-dimensional neirhborhood

v

at v.

“

We wish to apply a G-transversality technique of Petrie [22] to

investigate G-transversality on a neighborhood of the fixed polnt set

W€ Consider a fiber bundle F + V + X where X = 0. {End of MU nbd




of reducible connections in W9y n X:_E Xy, F=H S(H% ,Hs, ) = the

surjective G-homomorphisms.

THEOREM 6.16. (i) To perturb ¢ G-transversally throughout a

neighborhood of MG there are the obstruction cohomology classes

_ 3 .
05(¥) € H(X,X,32)

(ii) I 03(1;;) = 0, then the G-section ¥ has a smooth compact G-

perturbation R + o of the self-dual Yang-Mills equations which is

transversal to the zero section throughcut a small neighborhood of MG.

let N(MG) be a neighborhood of - e such that ¢ is transverse to
the zero section throughout N(MG). For each point v & M\N(MG), we can
choose a local coordinate chart O, in CAF such that h(0, ) N0, _ = 8.
let K=M\ {N(MG ) U End of M v neighborhood of reducible self-dual

connections}. The compactness of K and the local splitting of ¢ give

us a G-map

byt C/F x D) —>C x o) via v (xw) = (1) + olx,u)

whér'e ¢ 1s defined G-equivariantly for each w in a n-ball (n)c R

for some n.

THEOREM 8.6. For almost all we D™(n) the restrlctlon map

w( ) + o ,w) 1is transversal to the zero section throughout a neighbor-

hood ol K.




Thus if the obstruction cohomology classes OE(A) = 0, then we have
a smooth G-manifold M of dimension 5 with A-singular points each of

which has a cone neighborhood on:“Cpe, where M = rank H2(M;Z).

(B} Second Methbﬁ: We would like to find a G-invariant metric on M
such that a neighborhood of - MG is a G-manifold by modifying the
Uhlenbeck generic argument [14] and by using a property which a
finite group action on M is almost free. Throughout, the hat *

stands for irreducible.

. - G
THEOREM 7.3. There is an open G-set 0 of C x C  such that

(1) the restriction map ¢: 0 + Qf(g%) is smooth and has zero as a

regular value

(i1) if o(v,¢) = 0 and VEEM“G, then n—l(MAG) x {¢} € 0, where

1t ¢ + B is the projection and C = Ck(GL(TM)).

Using Sard-Smale Theorem [27] for a Fredholm map, we have

THEOREM 7.6. There is an open dense set in ¢” such that the

moduld. space M“ of irreducible connections is a manifold in a G-

nelghborhood of M‘G for each metric in the dense set.

Simllar result Theorem 7.7 is obtained for the reducible connection.

By Theorem 7.6 and Theorem 7.7, we get a following result.




. THEOREM 7.8. There is a dense set in the C° of the C°, G-

invariant metrics on M such that the moduli space M is a manifold in

a G-neighborhood of the fixed point set NP for each metric in the dense .

set. Moreover for these metrics Petrle obstruction classes varmish.

This result is true for the cyclic group G of order o (Theorem
7.9).

Again by the perturbation of the free part in M (Theorem 8.6) we
have a smooth G-manifold M of dimension 5 with A-singular points,
each of which has a cone neighborhood of Cp2, where X = rank HE(M;Z).

In Chapter IX for an odd prime p, we have

THEOREM 9.7. let a Zp—action on E > M have the fixed point set

kl A -k2

F= p{;I;)UIT l}i=l on M and let D be the induced operator by a

Zp—invariant fundamental elliptic complex. Then we have

enmit.
%)
ky K, (1-2, )+(m '\iﬂj—l)e 1
Index (D) = I E—%)[l+cot Df%i-J + I 6) 2m'.f -
Z i1=]1 J=1 —Jd

(1-e P )

A
where g € Zp,xn = self-intersection number of T 9 and r t

A

j 12 Sy
T

i

are defermined by representations of the normal bundles.




CHAPTER I1

o

CONSTRUCTION OF Zn ACTIONS ON SU(2)~BUNDLE WITH k =1

Recall that HP? 1is the set of l—dimensional quatermion sﬁbspaces
in the (n+1)Tdimensional quaternion space Hp+l,E = {{g,v) E P! « Hn+l: v € 2}
The projecticn p: E - " given by p(2,v) = & is a natural quaternion
1ine bundle. The associated unit sphere bundle of E -+ HP' is just the
Hopf bundle i3, g wnich is Un-dimensional classifying of SU(2)-

1 4 7 4

bundles. Incase n =1, HP- =3  and the Hopf-bundle S =+ 3 is 4

dimensional classifying of SU(2)-bundles with cE(E)[Su] = 1. There is

a well-known fact;

THEOREM 2.1. Let M be a compact oriented A-manifold. Then there

are natural 1-1 correspondences

{equivalence classes of SU(2)-bundles on M}

<—-—>[wﬁ,s”] +——4-H”(M;Z) = 7,

We would like to give a finite group action on this 4-dimensional

4 2

classifying bundle S » S' of SU(2)-bundles. S' = {(x,y) € H":

. Il
1x[2+ v[2E1), S =HU @)




T w7l if y#0
The projection #: 8" + 35" is given by =(x,y) =

o if y=0
First the unit quaternion SU(2) acts on S’ by a(x,y) = (xa,ya)

4

for a €SU(2) and (x,y) €S’ and S = s7/s0(2).

| Secondly a finite cyclic group Zp imbeds in SU(2) because
st € sU(2). Define Z, actionon ST by b(x,y) = (bx,y) for
b E Zp C 8SU(2) and (x,y)€ S7. Clearly the action of SU(2) and the
action of Zp on 87 are commutative, and the projection : 87 -+ Sll
is a Zp—map. Extend these actions to the acsociated SU(2)-vector bundle
of the Hopf-bundle S7 > Su. Give a natural SU{2) action on 02. Then

the group actions on the associated vector bundle 87 XSU(2)02 -+ S’4 are

defined by a € SU{(2),

c aof 2
(x,y,v)E€ S XSU(.?)C and ge ZpCSU(2) via

a(x,y,v) = (xa,ya,av) and

g(x,y,v) = (gx,y,v) respectively.

More precisely, let §' =D!uUD’ , E =g *su(2)0 - Then we have

) !
The transition function for the bundle E -+ S] is just the ildentity

function D_’: N DE =53 SU(2) = 83, t(a) = a. So the bund E + S is
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obtained by identifyiﬁg g3 X_02 - 83 X 02 via (a,v) +m (a,av). Finally
define Zp action on this bundle. For g Epr‘: SU(2) define a Zp—

action

2 yia gla,v) = (ag ™

on Du x C »,8V)
+

2 -1

on DE x C° via gla,v) = (ag ~,v)

and on the overlaping part '(Di n Di) X 02 for (a,v) 6-83 % 02, g€ Zp,

(a,v) transition map (a,av)
Z - action|on DI1l x 02 Z -—action on Du % 02
p + o) _
v
_1 + &3 —
(ag ~,gv) | transition map > (ag l,av) commutes.

Thus Zp-action is a well-defined smooth actlon.

THEOREM 2.2. On 4-classifying SU(2)-bundle E -+ Su we ma ve

a nontrivial Zp actlon.

Iet M be a simply connected oriented smooth H-manifold and let
El + M be a quaternion line bundle with Euler class - 1. Since the
classifying SU(2)-bundle E - S“ has Euler class -1l. By Theorem 2.1
El + M can be constructed by a degree one map M -+ Su as follows.

Let  I{M) be the injective radius of M, I(M) > 0 since M is
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a compact smooth manifold. F;dr any point x €M, and t € (0, L(—IEI—)E) let
V be a neighborhood df % such that V is diffoemorphic with an open
set of TxM by the exponential map and V contains BX(I(M)). ‘

Choose a smooth cutoff function A: [0,=] + [0,1] which is an
approximation of the characteristic function X[0,17° We may define a
smooth map g M g by ¢t,x(y).= exp‘l(y) on the vt-neighborhood
BJE(X) of x ‘and ¢t’s(M\V) = o (cf..F.U)

4

Here we identify S = Ru Vv i{=~}., The ball B,E(x) € M is radial

isometrically mapped onto B¢€(0) C Tx(m) by ¢, , and the annulus
bl

BE/E(X) - BVE(X) in M 1is stretched onto the exterior of B/E(O) in

= Ll 4,
TXM, and cutsides to . Let ¢t,s = Tk°¢t,x’ where Tt' S + 8 is

%
a dilation with scale factor t. Then the induced bundle ¢t xE + M is
3

a SU(2)-vector bundle with instanton number 1 because LI is a degree
]
%
onemap M to Su. Note the induced connection on o xE has the half
]

of the actilon on B/E(x).

By above construction and Theorem 2.2, we have following corollary.

COROLLARY 2.3. Suppose 3 Zp—aghjgn on. M has an isolated fixed

point which has the same Isotropy representation as the standard Zp—

’ aétion on 02. Then any SU(2)-bundle on Mu with k=1 has a non-

trivial Zp act lon.

2

! : 2
EXAMPLE 2.4. Let M‘ = Cp°, The complex projective plan Cp~

. 2 4
1s obtained by adding a complex line at infinite of C = R . If 82 =

Cpl C:Cp2 1s any projectlve line, then Cp2\82 = Ru. As above
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0y o Co° o R' + 8% is defined. Then the fixed point set 1s
3

{0} U Cp™\B,(2/F) wiich is homotopic to (p,S°).




CHAPTER ITI
FINITE GROUP ACTIONS ON CONNECTIONS
Let G be a finite group. -In this chapter we would like to introduce
G-actions on the set of all connections and various bundles. This group
action is first introduced by Fintushel and Stern in [12].
Choose Riemannian metric on a vector bundle E + M with respect to
. . Kk *
which G acts by isometries. lLet o™ (E). = r(AkT M®E) be the k-forms

on M with values in E.

DEFINITION 3.1. A Riemannian Connection on E is a linear map

v: QO(E) Ql(E) such that

V(fo) = df ® o + fv(s) and

d<cl,02> = <Vcl,02> + <01,V02>
for any f ¢ C”(M) and any 0y 01,0, E QO(E).

Given a metric on a compact manifold M there 1s a unique
Riemanniah connection VM on ™ + M which is torsion free. This is
called a levi-Clvita commection. We shall always use {his comnection
on M.,

13
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We extend a Riemannian connection Vv on E ‘to the generalized

de-Rham sequence

v v
OE) —L s ot®) L i) S ...

for any ¢ < QD(E), and any smooth vector fields vo-----vb

p ~
v 1
(3-2) (d ¢) veus = r (.—1) v (¢(v ,"',V. “e sy ))
RELLF A VO Vp i =0 Vi i p
- i+j LI LA R J LA
+ izg_( 1) ¢([vi,vj],vo, V5TtV vp).

where [Vi’vj] = VM v, - VM V..

. * *
In particular on R°(E) = (T M ®E) for 4, ® 6, € I(T M ® E)

a"(6; ® ;) = V4, ® ¢, + 4, ® V4, wnere ¥ 1is the dual connection
of VM i.e. ($§w)(x) = viw(x)] ; w(v%x) where w 1s an one form and
v,X are vector flelds.

The curvature of a connection Vv is the 2-form Rvez QE(Hom(E,E))

with values in Hom(E,E), defined for smooth vector fields wv,w by

P
(W8]
£
<:U
=
[4

Vva -VWVV -V[V ,W] .

REMARK. (1) The curvature R' 1s a zero-order tensorial differ-

ential operator on L.
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' R R, o
i.e. f(Rv,w fv Wl = Rc,f‘wd’ = Rv’wﬂp for feCc (M).

{11) The associated Lie algebra bundle ‘gE of E is defined by
g = ¢ € Hom(E,E) [¢, € Su(2) = Su(E,) for xe& M)

since <R ¢l,¢27 —<$1,R, w¢27 for ¢1:¢5, €0 (E) Vs W& TM,

Thus R c Q (‘j‘E)-

(111) Since a'(R") = d'R' - R'D" = a%a%4" - a%a"%a" = 0. We have the
Bianchi identity for R'.

(iv) A comnection Vv on E induces a connection v on 7 by

JE
_ v 0
(o) = [v,4] V¢ en %)°

We can iefine a metric on APTM x E which is induced from the

metrics on E and M. The pointwise inner product gives an L2 norm

. k o k
in @°(E) by setting (¢1,¢2) = fyy%ys9,> for 91505 € 0 (E).

k+l(E) 5

We have the formal adjoint 6': g QIC(E) of a' with the

property that

v " k k+1
(3.4) 91:95) = (¢7,67¢,) for all € (E), ¢,€ 2" “(E). More
explicitly we can write év in terms of the Riemannian Connection.

l

==L (v .p)le,,vyeeeev, ) where (e e-e.a,} is a
o geq et® eV Y C ey

(3.5)  (6")

RIRLEETS Y. sesel

1 1
or‘thononnal basls of T M since M 1is compact, by the partition of
unity there are SU(P)-connecLions on our SU(2)-bundle E -+ M., let C

be the space of all SU(2)-connections on E. By the gauge group G
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of a SU(2) bundle E + M, we mean the group ‘g of smooth bundle
autémorphisms preserving the metric and SU(2)-structure on E.

More formally 1et. p +M be the assoclated principal bundle of E
and let PXSU(E)SU(Z) + M be the associated the Lie group bundle, where
SU(2) acts by ad,joirit. This lie group bundle is in general not a
principal bundle. Then we have that the gauge group g = r(PxSU(2)SU(2))
is the space of the sections.

There is a natural action of the gauge group Cg on the space C of
the connections given by

(3.7) g(v) =gev og'"l for all VeEC, g€9-

LEMMA 3.7. The space C of SU(2)-connections on E is an affine

space having nl(f}E) as the vector group of translations.

Proof. Let v and v, be SU(2)-connections on E and f& c7 (M)

and ¢ < QO(E).

(v) = 9,)(£9) = vy (Fo) - V5(fe)

I\

df ® ¢ + f(vl¢) -df ® ¢ - f(v2¢)

n

f(v1¢) - f(v2¢) = £(vy - v2)¢

for any vector field V and V¢1,"¢2 e 22(E)
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Ly = o)y 15857 F <815 () = B) 857 = Ve 0> — V<o), 85> = 0.

5

And clearly (Vl - V2) is linear on QO(E). Thus we have

1
) —v2€ Q @’E).

REMARK. (i) 1In terms of local expression the connection Vv = d + A

g(A) = glag™) + gag™t
(i1) The induced action on the curvatures g(Rv) = ngg"l.
(111) RA = RY + g% + [4,4].

On an oriented Riemannian 4-manifold M,

Yoo, ¥

the Hodge Star Cperator
%
¥: APTM + A PPM is defined by

(3.8) aA¥g = (a,B)d vol € AMT*M

REMARK. We summerize the *-operator on Y-manifold

*
(1) On AeT M, %2 = I, let (xl,xa,x3,xu) be 2 local coordinate

of a neighborhood of p in M. We have an eigenvalue decompo-

sition
2% 2. ¥ ¥
TM= daATM
AT = AT M@ AT
2*
. where A+TpM = the +1 - elpenspace of *

<dxladx2 + dX3Aqu, dxlddx3 + dthdxg,

dxlAdx“ + dxzﬁdx3>
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ii) On 2-forms #* is conformally invariant.

v Vy

(1ii) On the 4-manifold the adjoint operator &' = —%§

DEFINITION 3.9. A comnection V €C is self-dual if *R" = grY.

If *RV = —Rv then 'is called an anti-self-dual connection. Let

be the set of all self—dual connections. Let B=CAy and M = q?%ﬁ

The comoatible actions of a finite group G on the bundle E —1L>WL
that is, G-sction on E through bundle isomorphism such that « is a

G-map, induces the actions of G on C.

DEFINITION 3.10. (1) On o%(E) h(s) =h e o e h™* for ¥h g,

g eno(E) where h ' is a diffeomorphism of M and h 1is a bundle

map.
(ii) For Y9 €Cand V is any vector field on M, Yo e 0°(E)

(v, = h[c}v(h‘lo)l

(111) on @), (he) .. = he 1 1 » for heg,

-..’h* vp

REMARK. (1) This group action on the space of connections was
first defined and studied by Fintushel and Stern [12].

(11) In the definition, (n(v) o), = (hvvh_lo)x = h(vv (hﬂlch

h™t(x)
Rh(V) —l_

(111) On the curvature = h c'Rv PR

F'rom the definition (3.10) we have some Lmedlate consequences.,
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LFEMMA 3.11. (i) G actson C -

(i1) G acts on B = AL

PROOF. (i) is immediate from definitions of connection and definition

(3.10).

. 0
(ii) For any hEG,gG?, veT(m) and oe& 9 (E)

[}

n(g(7)),o = hlg(V), (h "oh)]

l(h_l

I

higv g oh)]

I

(hgh ™) [hv h ™ (hg™n L )on)

(hgh™)[B(7) (g™ )o]

(hgh™ H)[h(v)] o

Tnus h(g(v)) = (hgh 1)[n(v)].

The definition h(v] = [h(V)] is well-defined on B.

Here G acts on the gauge group Cg by conjugation.

REMARK. Since G acts on M by isometries, G-action commutes with
the ¥-operator. Thuz G preserves the self-dual corniections, that Ls,

G acts on M,




CHAPTER 1V
THE INDEX OF THE FUNDAMENTAL ELLIPTIC COMPLEX

ILet V be a n-dimensional vector space with a inher product <, >
by defining a homomorphism AQ(V) + Hom(V,V) by (UAVIW = <u,wpv —«v,wdu
for all u,v,w € V. We have <(uAv)wl,w2>-+ <w1,(unv)w2> = 0. We can
identify AS(V) with the Lie algebra SO(n) of the special orthogonal
group SO(n). |

On Y-dimension, the decomposition A2 = Ai + AE corresponds the
decomposition of the Lie algebra S0{#) = S0(3) & S0(3). So, we can
consider Ai 3-dimensional Lie algebras. On the Lie group level the
homomorphis; m: Spin(l) = Spin(3) x Spin(3) + SO(4) defined by
n{g,h)x = gxh_l has kernel {(-1,-1),(1,1)}. As a manifold Spin(3) =
Su(2) = Sp(l) = 83, and w 1is the 2-fold universal covering map. Thus
for any oriented Riemannian 4-manifold M, we may have, at least locally,

the two complex spinor bundles v+(even) and V_(odd). Denote the total

spin bundle V = v;_eav;. The complex endomorphism bundle of V is

‘isomorphic to the complexified Clifford algebra bundle of the cotangent

%
bundle T M.

We will need more precise correspondence of this isomorphism

*
AC(T M) = Eqdc(v).

20
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Aé(T*M) = Homy(V,,V_), AS(T*M) . Homc(v_,V+)

(4.1) A§+(T*M) = Homy (7,00, 45 (FM) < Home(V_,v)°

(TM) = Aé(T*M) = C.

0
L"c

Where 0O denotes the traceless endomorphisms, and AC denotes the
complexification of AT

let E - M be a quaternion line bundle with k = 1 over a compact
oriented simply cornected smooth Umanifold M. For a self-dual connection
vV Eg], there is a most important elliptic complex in our studies which is
called the fundamental elliptic complex:

v a’
w2y 0 —— @ Soal@y) —=a’ G, —>0

where QQGTE) is the Sobolev completion of Q'C?E) with a Sobolev k-

nomm || ¢l 2 = £l oll 2 +e-e+ 1} 956l Z3 vol.

REMARK. It is a basic fact that the Sobolev completion of the space

of cross sections of a smooth finite dimensional vector bundle is a

Hilbert manifold. The operator 4" in (4.2) are continuocus. The gauge
group actlon 3{ on the space of connections € extends to a differen-
tiable action of %, on C3. If we do not complete (4.2) with Sobolev
norm, hen we cannot puarantee the elliptlc operators to be invertible,
Moreover the index of (4.2) is independent of the k-th Sobolev norm.

This fundamental complex was first defined and studied by Atiyah, Hitchin
and Singer [1].
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"IEMMA 4.3. The seguence (4.2) is an elliptic complex with finite

dimensional cohomologies.

PRCOF. Since the connection v  1is self-dual divdv = R_Y = 0,
*
For any cotangent vector ¢ eTxM the symbol sequence of (4.2) at
is

P (-AE)® id , 4
(4.4) o—>R®‘§E:"—‘5-M»TM®‘gE > 02T M @Fy —> 0

* *
where P _: AszM -+ AET M 1is the orthogonal projection to the anti-self

. ) *
dual part. Let {el,ez,eyeu} be an. orthonormal basis for TxM' Then

{(elf\e -e /\eq),(el/\e3 - ea/\e2),(eln ey — €A e3)} is an orthonormal

2 3
* :
basis for AgT M. Since P_le,Ae,,e; Ae

e /\eu} = {:—L(e he, ~ ey dey),

3’71 2 3
1 .
§(e1/\e3 - ey /\ez),2(e Aey —e,ne )} and since any non-zero ¢ # 0 in

¥
TM be a basis member. The seguence

* *
0 —>R -2 T 25 25T — 0

is an exact sequence for ¢ # 0 &€ T*M. This sequence 1s splilt because
‘it is free. So the tensor product wlth Lie algebra 1s also a short exact
sequence.

Let G be a finlite group. G acts on a quaternion line bundle
E ~— M wit'h instanton number one through bundle isomorphism such that
1 1s a G-map. We choose metries on E and M which are G-invariant.

Assume that the connection ¢ 1is G-invariant self-dual. Replace the
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.G be a compact Lie group acting smoothly on M. If b: F(El) + T(Ez)

is a G-invariant élliptic operator on M, then

Index D = BG(o(D)), where BG is the topological G-index.

Let g €G and let j: M + M be the inclusion

LOCALIZATION THECREM (4.8, [2]) Let G be a topological cyelic group

generated by g nacting smoothly on the compact manifold M. Then the

homomorphism j!:KG(TMg) + KG(TM) becomes an isomorphism after "localiza-
¥

tion at g", and its inverse (j!) L= —d
A;l(Ng x C)

where A_; (N® x C)

is the restriction to Xg of the Thom class of the normal bundle ’I‘Ng
in TX.

THEOREM (4.9, [3]). Let G be a compact ILie group acting on the

compact smooth manifold M, and let D be a G-invariant elliptic opera-

tor on M. Then the g-index of D is related to the fixed point set

M® by the formula

Chg(j*c(D))td(Tg ® C)

Ch(h_,N° ® C)

Ind (D) = (-1)™" (]

where m = dim Mg, J: Me o M is the inclusion map and NG is the normal
bundle of M® in M.

m will vary from one component to another.
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Calculate the G-index of G-invariant Dirac operator D of (4.6).
The Abalytic index, IndG(D) = Ker D - Coker D€ R{G) 1s a virtual
representation of G. Theorem 4.7 said that Ind,(D) = BG(U(D)) ‘is the

topological G-index of the symbol o(D) € KG('I‘M).' For the identity element
e,

Inde(D)

B,(a(D)) = trle: B(a(D)) —>By(o(0))]

B(a(D))

t

Ch(V_ ‘®§C)ch(v+ -V )td(TM ® C)e (M) M)

eh(V_)~ch(gg) K M) (1]

X,
5 =
where the genus AA(M) = I 2x
i=1 . 4
sinh 5
=1-P1+ 1 (_up +7P§)+----
24 7 5760 2
3 X
- i_ 1, 2 o
ch(@y) = iil et=3+c,F)+ E(cl(%lc) - 2c,&))

o
o
P
<
e
f

1
2+ cl(v__) + 5 Pl(v_)

2 4 % P (V).

Ci(Vy) = 0 because Vi s 3U(2)-bundle.

1k

Thus Ind, (D) cln(V_)ch@C)!\A (MYM]

P (TM)
1 1 1
(2 - 5 P (V)IL3 + 5 Py(F)I0L - —5p—10M]

i
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1}

P ) (M) + 3 ch(v A" ()]

-8 C,(E)(M] + 3(-by + by ~ b,)

= 8k - % (xI—T)
~where Kk = —CB(E)[M], bi = the i-th Betti number of M
bé = rank of . HE(M;C)
x = the Euler charécteristic of M, v = the signature of M.

Under our assumpticn, the instanton number k = 1. Since M 1is simply-
connected and intersection form is positive definife, so we have

¥y - 1= 2.

LEMMA 4.10. [1]). Let the comnection v be G-invariant self-dual

and let D be the induced Dirac operator. Then Inde(D) =5 where e

is the identity element in G.

let G act smoothly on Mu and preserve the orlentation of M
the normal bundle of the fixed point set has even dimenslonal fibers.

The filxed point set MG 1s a disjoint union of even dimensional sub-

manifolds.

Suppose that a G-action on the bundle E + M has a fixed point set
ny AirL, Ai
F=(p) - Ur™) oy o M where T is a Riemannian surface with
i=1 -

genus Ai.
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0 L P g = POy ySUR), Fo =Fp O L

where 1 1is the ﬁqclusion, P is the associated principal bundle of E.
The all induced bundles i*D - P are SU(2)-bundles. Considering the
classifying bundle SU(2) + E(SU(2) - B(SU(2)), the classifying space
B(SU(2)) is 3-comnected. The induced bundles on F are trivial because

. ¥
F has at most 2-dimension. The possible actions of h on 1 E -+ F are

T -1 0 -
o 100 b 05 _J1 or [y _J] by considering Z,-representation

on C2. However [—é g] and {g‘) _2] do not preserve the SU(2)-

# —
structure on i E. The remainders [é S] and [é _g] acts on SU(2)

as the usual multiplication of 3SU(2), and on the associated Lie algebra

bundle ¢ as the adjoint action.

E

et [* 2 71esu), (2t Oyt e gil Ot a2y g

-a -it 0 +1. -a -1t 0 +1 -a -it
the G-action on ?’E + F 1s trivial and on the complexified Lie algebra

bundle over F 1s also trivial. Thus we have

ch. @) =ch) =3+ )+ --r =3

(' ©C) = 1+ Jc(moc) + een =1

and
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Chy (V, = V_)Chy (V) :
- Cn (AT ®C)

P]

i wi i

e (e 2 _ g 2)5'
:[n - .'
(1~e 1)(1-e 1)

3

1™ + e™)P) = -

PO

Hence (Inth) = - 5 wvhere <h7z= Zg. The contribution to the Indh(D)

A

on a fixed point component T - .Which is a Riemann surface with genus Ai.

Ch (V, = V_)Ch (V) Xy
[T =]
e(T)Ch, (h_N" ® C)

e S R W TN B S - O SO 1
(e2_e 2y 22 2 _,2 2y ,2 2
(xz + 71) "(Xe + 7i)
Xl(l - e (1 - e )
-X, X X X
_ Q-6 Hate At My
%2 %9
Xl(l +e )L +e )

(L -1+ xl)(l Xy - 1 - x2)

Xl(l + 1+ x2)

A
i
(% = X1 )

1
Pl

A A
i R I
Xl[T ] - Az[l ]

I
POl

where X

snd Lhie nuetiied bundle off 'L I respech ivelys Thus

(e

(X2+wi)
e

)T 13

1 and X2 represeTt the Euler classes ol the tangent bundle
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: A As
Ing, (D) ] T %'{Xl[T ] - X, [T aib!
T

THEOREM (4.11 [3)) Let X be a compact oriented manifold of

dimension 4k, and let h be an orientation preserving involution with

fixed point set Xh. Let (Xh)g, denote the oriented cobordism class of

the gelf-intersection of Xh in X, then

sign(h: X) = signl (XM)°].

In our case the manifold M Ias dimension 4 with fixed point set
A: N ‘

='{Pi}ii1 U l}iil' The isolate fixed points have the self-inter-
A, X
section 0. TFor the Riemann surface T * the self-intersection of T ™

in M is the disjoint union of signed isolated points. Thus
A . A
sign((T 1)2) the self-intersection of T T

1

A,
_ i
= (X,),[T *]
A
where (X2)i is the Euler class of the normal bundle of T i in M.
sign(h:M) = sign((Mh)z)
n
2 A
2
= 1 sign((T 1)
i=1
n A
_ 2 i
I° (%) LT 7]
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© - T e @, + 1 o)
Ind (D) = I Ind (D)|, + T Ind (D)
o e ol
n A A
2t (- HIEOIT T = (%), [T 1]
i=1
5 g , .\i) i : A
=-3 {ny+ L x(T7) - ¢ (X),[T ]}
ety =1 21
3 T2y |
==-5{n + I x(T7) - sign(h:M)}
i=1

THEOREM 4.12. Let V¥V be a G-invariant self-dual connection. Let

D be the induced Dirac operator by the fundamental elliptic complex (4.5).

n A, n
let F = {Pi}i=i (T l}izl be the fixed point set on M. Then we have

|
(5

IndI(D).u

o

Al
Ind (D) = =3 (n + £ x(T T) - sign(h:M)
h 2 1 .
i=1
let ¢ be a G-invariant self-dual connection we have a G-invariant
a2
elliptic complex 7 + di: 91C¥ﬁ) -+ nOCZE)($ n;ﬁ?ﬁ). By elllpticity this
complex ras [inite dincnslonal Ker and Coker. The analytic G-index

of this complex = Ker(s' + dg) - Coker(s" + dE)
U N S N
= ”V - (”V @ HV) € R(3)

where these cohomologles are the cohomologles of (4.2).
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O 0 1if the connection v is irreducible,

The cohomology Hv_

otherwise it has dimension one and trivial G-action, since G acts on

these cohomology groups.

(Gim H: + @im H: ) - @im B0 + aim M2 4 dim B2 ) = 5
v, v H, v, v
R R 0 223
{dim HV+ dim HVH) - (dlm_Hv+ + dim Hv+ - dim Hv“) =-5 A
| oy
where A = ny + T x(T 7) - sign(h:M) and
‘ i=1

* stands for +1 eigenspace of the generator h €G.

THEOREM 4.13. If a comnection v is irreducible (reducible) in M,

h(v) = g(v), (hg)2 = +1 for some gauge transformation g, then we have

dim}%+~dimﬂg+=%(1o—3ﬁl

dﬂnﬂ%_-dimﬂg =%(10+3A)

¥
where Hv is the +1 eigenspace of hg.
+

Each element of the fixed point set M in the moduli space M is
determined the G-invariant self-dual connections up to the gauge equiva-
lence. We need another index calculation.

Suppose that VvV Is a self—dual irreducible comnection such that
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h(v) = g(v} for some gaugé transformation g(# +1) where <h>= G.
Then (hg)v = v, (hg)%7 = v. Werave (ng)° =+Ie€% If (ng)° =T,
then we have the same result as Theorem 4.12. If (hg)2 =-I, then T
has order 4 on the total space E and f has order 2 on the base
manifold M, where f = hg. Again we have a f-invariant fundamental

elliptic complex
0 — QO@E) ——‘#ngE) — ﬂf@E) —>» 0
As before we have an induced elliptic operator
D: (V,®V_6F) ——>‘r(V_ ®V_ %),
and its index

gim M-

2

Chf(v+—V_)Chf(V_)CthjC)td(TMr ® c)mf]

ind (D) = (~1)
£ e(M') Chu(h_N' ® C)

dim M
5

Ch (V,~V_)Chy (V_)Ch(%,)ta(TH" © C) [
e(TMh) Chh([\_lNh ® C)

= (-1)

The only difference between this formula and previous formula is

that the h-Chern character Cthﬁb) is replaced by f-Chern character

Chfcgé). When we consilder the fixed point set F = Mf = Mh =

n A, n
1 U 1,2

i}i=l }1=l on M. The various associated SU(2) burdles,

P
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"specially *gb on the fixed point set F, are trivial. On E f acts

2
e E 0
—-2mi

0 e

as a multiplication of ( ) with order 4. On the associated

Lie algebra bundle ﬁ}E, f acts adjointly i.e.

i 3 4

e e, 0 it, 'a ,,e 195 0 _ /it , ezlea

( o) ) ( ) = ).

o & 3 -t o e*? —2i8
a, -4 ’ e it

So if we write & =R®C, then f acts triviallyon R and f

acts with weight 2 on C. Using splitting principle Chf(ﬁb) =

X X - X .

etvee™ae™ o1 1 1=, Ad since ta(mfe c) =1,

Ch, (V,-V_)Ch (V) Ch (V,-V )Ch (V) . )
R R T R i e T N R I
Chh(A_lNh ® C) e(T “)Ch (A_,N50)

X, A,
where X2(T l) is the self-intersection number of T 1. Thus we have

N o
I [Indf(D)]P. + I [Indf(D)] A

i=1 i 1=1 T i

I

Indf(D)

A, Ai
(x(T *) - Xy(T )

[ Nl

2 Ai
{n, + £ x(T 7) - sign(h:M)}
Looya

H
PSY =

Similarly we can calculate Ind (D) and Ind ,(D).
£ £’
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THEOREM 4.12'. Let V be a self-dual irreducible cormection and

h(v) = g(V) for some gauge transformation g, (hg)2 =-I, let D be
the induced elllptlc operator- by the fundamental elliptic complex (4.5),

Let F = {Pl}l_% tJ{T } be_the G-fixed point set on M and let

= hg. Then we have

Ind (D) = 5
£
1 Ny,
Ind ,(D) =5 {n, + I x(T?1) - sign(h:M)}
1 2 ‘M 7
f i=1
Ind ,(D) = 5 ‘
£
1 B2y
Ind o(D) = 5 {n, + & x(T ") - sign(h:M)}.
3 R
£ i=1
) L Ai' )
For simplicity let A = ngt Tox(T ) - sign(h:M).
i=1

Now let us consider the analytic index for the fundarental f-

Invariant elliptic complex. IndH(D) = H% - H2 € R(H), where H = <y,
3
Irreducible H = <fr-decomposition H: = & thl nv hH?
v n=0 n=0 n V n

¥ *
where h acts as (i) on to,,, wd h €2Z. Then
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-_IndfO(D) = (hé + 0]+ ny 4 h%) - (n§ + h + 105 + h§> =5
Indfl(D) =:£h% + iny - hy - ih%) - (h5+ 3h - nS - ihg) =3 A
Indf2(D) = (ng - hl +h) - h%) - (ng - ny + b5 _ hg) =5
L.Indf3(D) = fhé - ih] + ih%) - (hf - inf - n2 + ihg) =3 A

From these we obtain

THEOREM 4.13'. Under the hypothesis of Theorsm 4,12', then we have

—1 .21
hy - hy =7 (10 + A)

1 2 _ 1
.hg-hz—n(lo-—ﬁ).

-

REMARK. fAbove calculation hy - h° = 0 and hé - hg =0, actually

% *
hl = h3 = 0 by construction.

Next suppose that v is a self—dual reducible connection such that

h(v) = g(v) for some gauge transformation g ¢ e, where Iy is the

isotropy subgroup of v which is 80(2). Then (hg)v = v and
2
(he)?(v) = 7. S0 (hg)® e,
Conslder the extended gauge group %;e =" {(g: Eo E|g is a bundle

ilsomorphism which lies on id or h on M}. Then we have exact sequences
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0 > —Y° —> 2, = {id,h} —>0,

_ e -
and O-———>I‘v-———>rv ——>22 0

where I‘g 1s the isotropy subgroup of V in the extended gauge group

e e . . : N _,~1 0
03. Then ry is either rvxz2 or 02_ TV+UFV where o = ( 0 l).

The extended gauge transformation hg € Pg lies on h.

e _ a .
If 1"v = 1‘\;7 x Z2, then hg = glh for some 8, € I‘v, hgh = 8- Since

(hg)zv =9, (glg)v =¥ and so g(v) = v,
This contradicts to g ¢ FV. Thus Fg # I‘v x 22 of course we may
e _ . . '
have I‘V = 1"v x Z2, buf in this case g € rv.
e - _
If l‘v = 02 = T @ UT'V, then hg 8,98, for scme 8,8, £ For
o = gilhgggl lies on h., v is g-invariant. From this expression, that

has order 2 it is not clear, but by construction o has of form

So ¢ acts on the Lie algebra bundle <

Ig

-1 g). as

-1 0,,it a ., - 0, _ (it -a

_ ~ Thus we obtain Ch (D) = -1,
-a  -it a ¢

, —it

By similar calculation with the irreducible connection, we have

THEOREM 4.12". Let v be a self-dual redunible connection and

h(v) = g(v) for some pauge translommtiion g & Fo. et D be the

induced ellintiec operator by the fundamental elliptic complex (U.5).
A n
i} 2

i=1

0y
let F= (P U (T

i}i=1 be the G-fixed point set on M. Then

hg € T, @ oT, where o = ("é (])). Moreover if o = gzlhgg;l for some
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'gl’fB E PV’ then
Ind O(D) = ?
Ind (D) =% A.

THEOREM 4.13". Under the assumption of Theorem 4.12", we have

dim K - dim H =7 (14 + A)
+ +
. 1 . 2 _ 1
dim Ky - dim H = § (10 - &),
T2y
We will see the number A = ny + ¢ x(T 7)) - sign(h:M) 1is +2 in
' i=1

Theorem 6.6. We. can calculate the dimension of the fixed point components

of MG of the moduli space M, by Theorem 4,13, Theorem 4.13' and Theorem
4,13",

COROLLARY 4.14. Suppose v & M

(1) If v 1is irreducible, h(v) = v, then the dimension of

V—compeonent; 1o 1

(11) If v is irreducible h(v) = g(v), (hg)2 = -1, then the dimension

of Vv -component is 3

(111) If v 1is reducible, then v 1is a singular cone point of a 1-

diﬁensional fixed point component and a 3-dimensicnal fixed

point component.




CHAPTER V
PERTURBATION OF M

let m: E + M be a quaternion line bundle with instantoﬁ number one
and with a G-action on E through bundle isomorphism such that = is a
G-map. Here G is a finite group and M 1is a simply connected, closed,
and smooth 4-manifold with a positive definiti intersection form. The
moduli space M which is the set of self-dual connections 9 on E
modulo the group ﬁj of gauge trnasformations, is a G-space but may not
be a manifold, when we start with G-invariant metric on M. In this
chapter we would like to find a G-invariant metric on M such that the
fixed point set AF in the moduli space M 1is a smooth set which
consists of smooth manifolds. To do this we will use the Uhlenbeck
argument which was used to find generic metrics such that the moduli
space of irreducible self-dual connections is a manifold.

ret cK = cK(GL(TM)) be the set of Ck—automorphisms of the tangent
bundle, that is, the group of gauge transformatlons Cor the bundle of
frames. Then Ck in a Banach manifold. If r is a fixed G-invariant
metric on M, and ¢ e CX then the pullback-action on (T*M(s T*M) by
¢ plves a new metric ¢*(g). Every metric is realized in this way.
On each fiber considering O(n) - GL(n) -+ sym(n) = GL(n) . The metrics

o(n)
. %
on M is uniquely determined in this fashion if by e sym(n) for each

39
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X € M, Thus many differen{: $'s € Ck(GL(‘I‘iVI)) may produce the same

metric on M.

Iet P : 92 + QE pe the projection onto the anti-felf-dual 2

* 1%
forms with respect to the metric g. Then ¢ P_¢ 1 is the projection

: *
onto anti-self-dual 2 forms with respect to themetric ¢ (g), that is,

| the following diagram cormutes

D #* — ¥
T(ATT M)g ——?r(AET M)g

=% ¥
st L
P

o ¥ - 2 %
T(AT M) ~———>T(A'T M) 4
¢ (g) ¢ (&)

where P_ is the projection onto the anti-self-dual 2~-forms with respect

%
to the metric ¢ (g)-

Iet %k be large enough and define

o k o2
¢: C, 4 xC >Q ( E)£,2
~1%_v
by *(v,9) = P_(¢ "R,

where Cz—l 1s the set of irreducible connections on E with (¢-1)-

Sobolev norm. ¢(v,4) = 0 if and only if R’ is self-dual with respect
M ,

to ¢ (g). Thus Ck is chosen as our parameter space precisely so that

we could detect self-duality by mapping into a fixed space nfcgg)l_z

with respect to the metric g.
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~

LEWA 5.1. Thismap o: C,, x C<» °(%), , isa G-map.

PROOF. For any h &G, and any (V,4)€ C x C°

(h(9),h(8)) = P_[(a() BN

P (h(¢) " ,mr"n ]

i

P h{ HRY]

h P 6"V R

n

n

h ¢(v,¢)

Fourth equality holds because the metric g 1is G-invariant. Thus

we have a G-invariant map ¢.

COROLLARY 5.2. A comnection v 1s self-dual with respect to

* #*
¢ (g) if and only if h(v) is self-dual with respect to (hy) (8).

THEOREM (5.3. [14]). The map ¢ 1s smooth and has zero as a regular

value.

Since zero is a resular value tb"l(O) is an infinite dimensional
Ranach manifold of self-dual comnections parametrized by the set of all
metric Ck. Since the gauge transformation group °JQ acts on M trivially,

and %, acts on »71(0).
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THEOREM (5.4, [141). ¢'1(0;éé C(C, /g *C° 1is a mnifold.
2 %
We have the following diagram

-1 - k 2
$71(0) ——>C, . x O —>a"Fp), ,

[o (0)/?£] —>0 (O)%E-—?Cblézc

A

[\
k-G K k

(¢l ——¢ — C

Here ¢_1(0)/ is the parametrized moduli space by the metrics ck.

Te

For each metric ¢ € Ck, -n—l(q:) = MA* is the moduli space of
¢ (8)

*
irreducible connections with respect to the metric ¢ (g). As a set

4"_1(0)/001 = UN, .
L ¢<C ¢ (g)

THEOREM 5.5. The manifold c:a'l(omét is a G-space.
'

PROOF. Since # is a G-map, ¢ ~(0) is a G-space. By Corollary
M
5.2, a conneation v is self-dual with respect to ¢ (g) if and only if
%
h(v) is self—dual with respect to metric (h+¢) (g).

For any gauge transformation g€, h€ G, ¢ MA*
¢ (&)

hlg(v)] !

1l

nlavg 1] = heog th 7t = (hen™ D) (on Y ing tnh

I

h(g)-(h(v}]
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‘S8ince G acts on CZ by conjugation, h(g) &Y. Hence the map

Moy -—>MA % givén by {[v] -+ [h(v)] is well-defined.
v (g) () (&)

Thus the G-action on d:“l(o)/ca, is well defined.
g

Since the projection map w;Cl_l4} x Ck -+ Ck is a G-map and the
)
restriction w: ¢_l(0)4%, +~ X is also a G-map. In [14] they showed the
" 2 '
map T L) = M, Which has dimension 5.
¢ (&)

The map 7 ¢_l(0)/é¥ Ck is a G-Fredholm map. The restriction
. \

map T (q:‘l(o)/g )¢ &+ (M8 is a G-trivial Fredholm map by Theorem L.13.
2' .

By Sard-Smale for a Fredholm map between paracompact Banach manifolds we

have the following.

THEOREM 5.6. There exists a Baire set of (C)% such that

™)L = (M”* )G is a smooth manifold in the moduli space MA*
¢ (&) ¢ (&)

*
of the irreducible self-dual connections for the metric ¢ (g) on M.

From now on we will fix a G-invariant metric on M and we will flx
G-invariant metric on the total space E of the bundle such that the

fixed point set M‘G, in the modulli space M of the Iirreducible con-

nections, is a manifold. Note that the above Baire set of (Ck)G is a

open dense set for each I




CHAPTER VI

PERTURBATION IN A NEIGHBORHOOD OF MC

In Chapter V, we showed that there is a G-invariant generic metric
on M such that the fixed point set MAG in the moduli space y of
irreducible connections where G is any finite group. We will fix this
G-invariant metric and G = ZZ' In this chapter we will find the condi-
tion which we can locally perturbate in a neighborhood of MG by using
the result of Chapter IV. Also we will find the condition which we can
globally perturbate in a neighborhood of MG by using the result of
Chapter IV and Petrie's G-transversality argument.

Recall the local structure of the moduli space M =4 /"6( C B suppose

that the fundamental elliptic complex:

0 a1 a! 2
0 — 0, %) ——?93(?E) ———rn_z('}E) —0

has the indicated Sobolev norms where v € M. A comnection ¢ is
v 0

reducible iff dimR(Ker d’) =1 at ¢ (3%) 1ff an isotropy sroup

rp = e Jla'e™ = v = uQ).

Considering an orthogonal decomposition

1,0 = 3@y = () @ (er ")

hy
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For each ve€ B we have a neighborhood of the form

(6.1) Oy = v+ aje'a=0, | 4] 5 <€}, if ¥ is irreducible’
3

0, su(l), if Vv is reducible,.
v,e

In particular the space BA of irreducible connections is open in
B and is a smooth Hilbert manifold. In a reducible self—dual case the
bundle E = £ ® & splits where & is a complex line bundle on M and
the reducible connection v= v, & 31. The bundle Qn(%E) =o' @ Qn(zg)
by scalar multiplication.' Thus H% and Hé are finite dimensional complex

vector spaces.

For a gauge transformation g € 9, the anti-self-dual part

R§(V) = g o RV o'gal. This gives a cross section of the fibration

F = Cx‘# Qf(‘gE) +B= C,%’ where % acts on nf(%E) by adjoint. Namely,

the cross section
Y: B=C/ ——(X ?_(‘gE) is given by ¥(v) = (V,Rf).

et vE€M bea self‘—duai connection on E. Set V = Kerévcné("ﬁ‘E)
and W= 932%). Define a smooth map ¢: v +w by y¢(A) = diA + [A,A] .
Then the differential (dwo = di: V> W. Since y 1s a Fredholm map.
By setting V, = Ker d’, Wy = coker d', d': V = V, @ Vy o+ W= Wy @ W
and the restriction map dg: Vl -+ wl ls a Hilbert space isomorphism.

Define amap F: V-V by F=id+ (a) L P, o (4 - (a"),) where

: Pyt W+ W, is the projection. Then (dF)y = 1d,F has a local inverse




U6

G around 0. Jet U be a small neighborhood of 0 on which G is
defined. Define ¢: U+ Wy by @ =Py(¥ - dyy)G. Tren #(0) =0

¢ is commutative with U(1l)-action we have a local commutative diagram.

v——2> uy=w ® W,

0
|
G

(¢,a_)

V=V, @YV

We have local coordinates of the moduli space M.

(6.2) Mo, = o™1(0) if v is irreducible

>

M N0, /(1)) = o"H0)/U(1) if v is reducible

let a connection Vv be a self—dual G-invariant connectlon considering

the fundamental elliptic complex

v
v d
0 ———:»no(oq[?) f_—i:gnlq[i) ——'—}nf(‘}E) —>0
: v
S

We have some immediate cons:igquences
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LEMYA 6. 3.

(1) The generalized connection d': ngE) + Qp-l-l%) is also
G-invariant

(11) The adjoint operator &' is G-invariant

(111) Themap y: VW givenby w(A) = a"A + [A,A)_ is G-
invariant

(iv) Themap F: V-+V givenby F = id + (df)_lpi(w - dwo) is G-
invariant

(v) &= po[w - dIIJOJG is G-invarinat where the function G is a

local inverse of F,.

* PROCF.

(1) For any h € G,¢ enp(%fE) and vpeerev, €™

v :
(d h¢ ) L B B =
Vot

| [ Ry ]

(=107, [(he) (vgeeevyeeeev )]

J=0 J

£z GO ) (Dvy v, dvge v e ev ey )
i<'} A V‘j ‘VO Vi VJ Vp

D]
= z(l)v h{¢ _1

=0 Vi hy 0,---h*]vj,'--h* v.)
+ oz (-1)ng _ R )
A [hy vy h VJ ]ll* v,)-nh* ..-h* VJ.f.h* \.rp
=nl ¢ (-1)v 0
: -1, % -1 AN |
J=0 hy vy Ry vy e hy vj---h* Vo +
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Suppose that a connection v is G-invariant, reducible self-dual.

In the fundamental elliptic complex the cohomology groups are HO = R;,

junf
R’

v Ck+3 and -Hﬁ = Ck. They have G-actions. Also the isotropy- group

—
4

g = U(1) of Vv in the gauge transformation group f}- acts on the

1

cohomology groups H@ and Hg by scalar multiplicas Of course HO

v
i1s a trivial representation of G. On the cohomologies H% and H€ the
G-action and Fv—action are commutative because their representations are
just complex number multiplications.

LEMMA 6.4, On Hy

and K the G-action and T. = U(1)-action
v

commute.

THEOREM 6.5. [9]: There is an.ogen set MA of the moduli space
C

M of self-dual connections which is a smooth 5-manifold diffoemorphic

to M x (0,14) for_small Ay > 0 and the corplement k = MW, is compact and
0

p(v) = (V,RE) is transversal to MAO.

From Theorem 6.5, the end part of the moduli space M 1s naturally
diffeomorphic to M x (O,AO) for small Ag > 0, and which 1s formed

by irreducible self-dual comnections. In our assumption the filxed point
N R M

u }i“l on M, where T is a Riemann surface
i=1 8

with genus Ai. At the end part of the moduli space M has

set P = {pi}

)\i n

n L
F x (O’XO) ={pi X (O, AO)}iil U T ® (O,k )}iil
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as the fixed point components. While the Theorem 4,13 say that some
fixed point component in M has dimension %T (10 — 34), the Theorem 4.1

say that another fixed point component in M has dimension % (10 + R)
n

where A = ny + % (ij‘) -~ sign(h:M). If we compare these results, we

i=1
" have

THEOREM 6.6. Under our basic assumption on Z, = <h> bundle E M,
M
i X
we have A= ny + I x(T7) - sign(h:M) = +2.
i=1 .

REMARK. This result may be got from the leftschetz fixed point
Z .
theorem L(h) = x(M 2).

THEOREM 6.7. Suppose that v 1is G-invariant, reducible self—dual

in M, then there is a G-equivariant perfturbation around v in B such

that the perturbed moduli space M. has a neighborhood at v which is

1
an open cone on Cp2, here v is the cone point which is fixed by G.

PROOF. By Lemma 6.3 the differential map
pr Vs Ker(s') ¢ szl(%(,,) bl:.!lf(t}E) given by ¢(A) = dY_A + [A,A]
decomposes as a mp  (8,d"): H- @ v, H° @ W, by a diffeomorphic G-

invariant change. The restriction map dglv is a Hilbert space
1

isomorphism and ¢, di are G-lnvariant.




By Theorem 4.13 and Theorem 6.6

1
dim Hv

[A]
It
n

- dim H
+ Vi

. 1 ' _
dim H} -dijﬁl-u

If h(v) = g(v) for some gauge transformation g ¢.rv, then by Theorem
4,13"

1 2

dim H- - dim =4
s Hv+

dim H: ~ dim HS = 2
V_ V_

The map ¢ is a G-equivarlant submersion if an only if the map ¢
is a G-equivariant submersion. We can easily perturbate ¢ into a G-
equavariant submersion. For example the first case, by Schuf's Lemma

map ¢ 1is deconposed as follows

ko4l k42 k.  k
EBH% =ct @c? —H =H @H%=CIEB(:2
o v, _

JR R |
From thls decomposition we can choose a map h: H% + Hg which is linear
surjective and G-invariant. We choose a smooth cutoff function

- y .yl 2
p€Cy(0;, ) suchthat p=1 near O. Then ¢ +p(h = ¢): Ho» H
has a C-linear surjective derivative h at the zero. By (6.2) the

new zero set modulo Pv 1s a cone on sz.
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Suppose that a reducible self-dual comnection V is not G-invariant.
we can choose an open neighborhood Ov_ E/U(l) in B such that
(OV'E/U(:L)) n hwv-s/U(l)) =.g. We w‘ill see the comnection h{(v) "is
also self-dual reducible. Since h(§'4) = Gh(v)(H(A)) we have a map
h: Ker GV + Ker(éh(v)).

f

h(¥(A)) = h[de + [A,A] ] d}_‘(V)(hA) + [hA,hA] .

Thus we have a comutative diagram

v 2
ker & >aZ )

Ker §"(7) -———9’—-—;-93(?'5)

By our usual technique ¢ = (q;,di): H% & Vl + Hg ® Wy The restriction
ol 2 .

o H'v + HV is a I‘v—map. The action on the isotropy group h: [‘v + I‘h(v)

is a diffeomorphism. After compact perturbations we have

THEOREM 6.8. h: [cone on Cp° at (v]] + [cone on Cp? at h(v)] is

a diffeomorphism except the cone point (Vv].

We set A =3 #(u€H(M:Z){uu=1)}. We have \-veducible self-dual

rauge cquivalence classes [01],'--,[&7)\]. So far smooth G-noanifold MC
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~and {cones on Cp2} is established with A-singularities. We have a compact

perturbation ¢l =y+o0 such that wl = ¢ outsides small cone-neighborhoods
of the Vv 's. The differential - dwl is also a Fredholm operator which has

the same index with dy.

Next we would like to perturb the new moduli space
2
My = {v €Biy;(v) = 0}, where Y =¥t ol B—>C x,} 9_(35)

G-equivariantly to a smooth 5-manifold with A-singuelarities. Each singu-

larities has a cone neighborhood on Cp2.

We have the smooth part MA L}hiG ) {open cone on Cp2 at each
0

reducible connections} in the moddli space Ml CB with A-singularities
We would like to perturb a small neighborhood of M O first locally and
then globally by using Petrie G-transversality argument.

Suppose a coﬁnection vV 1is G-invariant, (self-dual) irreducible and
¥ (%) = 0. Locally the map ¥,: V = Ker & +W = 82(¥,) 1s a Fredholn
operator (d!bl)O : V* W has the index 5 with splitting V = Ker(d¢l)01$ V

1’
W= coker(d¢l)0 &)hh_ and Ker(d¢)0 = Rk+5, coker(dy = Rk., The

1)0
restriction map (d¢1)0|V is a Hilbert isomorphism.
1

REMARK. Here we may not consider the cohomology groups of the
fundamental elliptic complex because Vv may not be a self-dual connection.
However ¥y 1s a compact perturbation of ¢. They have the same index
and outside of the perturbation they are the same operators in this case

we can consider the fundamental elliptic complex.
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To see the local structure at irreducible comnection Vv we would

like to use the Kuraniski argument for this Fredholm map $,: V > W.

1
Define a differentiable mep F = id + (a¥y) op o(¥ - a¥)): V + v where
Pyt W+W be tﬁe' orthogonal projection. Then dF = id. So F is
‘diffeomorphic around the zero. Define a map Q: Ker(aw, ), > coker(dv, ),
by Q= poowoF_l around the zero, where Py W~ coker(dwl)o is the
orthogonal projection. By Lemma 6.3 these all maps are G-equivariant.

So the map

(Q,(dtbl)o): Ker(dlpl)o @ v, —> coker(_dtpl)o SN
is smooth G-equivariant ang ¥y = (Q(dtbl)o) °F 1is G-equivariant decom-

position. We would like to perturb the nap

Q: Ker'(cw:l)0 —-—:ocoker(dwl)o
to be a map whose derivative is surjective and G-equivariant.

For v €M% n(v) =g(v), if (hg)? = 1, then since A = 2 by
'Iﬁeor'em 4,13

dim By - dim HS =i
+ +
dim My - dim KO = 4,

,
if (hg)® = -1, then by (4.13') we have




The map ¢ is a G-equivariant submersion if and only if the map Q. is
a G-equivariant submersion. In general Q is not a submersion. By the

Shurts Lemma, the G-equivariant map Q splits as following.

k.+1 K.+
6.9)((1) I (hg) =1, then Q: H%=Rk+5= R* ), ®@®° ==
k. k
2 kK 2
Ho =R =RI@R_

K
(11) If (ng)° = -1, then Q: HY = R = (r

2k _ A
H, = R = R} @ R

+3 k.+2
Ph,ew? )~

From this splitting we can easily choose a map h: Rk+5 > Rk which is
a G-Invariant epimorphism. Choose a smooth cutoff function
p€Cy0,, ) with o= 1 near 0. Then the map (1 - p)Q + ph: R0 , RK

1s G-equivariant and its derlvative is a epimorphism near 0.

THEOREM 6.10. If a connection v is G-invariant, self-dual and

irreducible in M, then there 1s a G-invariant smooth compact perturbation

around v such that the perturbed new moduli space has a smooth 5-

dimensional neighborhood at v.

PROOF. By above construction and replacing ¢ by

[(1 -~ p)Q + ph, (dwl)O], we have the result.
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We showed that we can perturb locally at each G-invariant self-dual
comection into a G-invariant manifold. We now would 1ike £0 find the
condition under which we can perturb a neighborhood of the fixed point
set MG into a G;equivariant smooth neighborhood of MG. To do this we
will introduce Petrie's G-transversality argument and then will apply to
our case.

The G-transversality argument gives a solution in terms of an
obstruction theory and by giving a criterion for the vanishing of the
obstructions.

We would like to introduce two basic ideas. The first is that the
problem of equivariant transversality is involved with global phenamena
in contrast to the non-equivariant situation is local. The second is
that Shur's Lemma applied to the equivariant vector bundles involved
with transversality gives a splitting of the problems into two parts.

We can solve the first part by using the Thom transversality theorem for
the case by trivial group action and the G-homotopy extension theorem.
This fixed point part was already done by using generic metric on M.

So our main interesting part is the second part, namely the transversality
obstruction.

| More precisely, the three smooth G-manifolds N, M and Y are

giﬁen with YC M an G-invariant submsnifold and a proper G-map f: N+ M
1s transverse to Y with X = F_l(Y) and HCG. Then £ is trans-

versal to YH

c M and the norml bundle wOGN) of X in N has a
splitting . v(X,\)! @ XNy and v = oKy ang

U(X,N)HIxH &)v(XH,N) the fact that [ 1s transverse to Y throughout




Y

‘XH is thus expressed by two equations

(1) vl = (e ot vy

%
FRECRRCEuN

1(2) v )

By Shur's lemma, the first equation (1) only depend on fH: NH > M and
is concerned with the action of the normalizer of H mod H on NH and

MH which by induction can be asstumed to act freely. As we know the
problem of fH being transverse to YH in MH by treated by Thom
transversality and in particular gives xi = (fH)"l(YH) as a submanifold
of N. Then it is equation (2) which provides the basis for the transver-—
sality obstruction theory. Define the G-fiber bundle Ve o= Hom® (£, n)

of real surjective homomorphisms of the G-vector bundle E over Y onto
the G-vector bundle n over Y. The action of G is defined by conju~
gation on Vs,n . Then v?,n is a G/H fiber bundle over YH if H is
normal in G. The fiber over y € YH is V(H)y = Hbm;(sy,ny) the space -
of real surjective H-homomorphisms from the fiber Ey to n_,. Then

y
Petrie show that,

THEOREM (6.11. [22) G-transversality Theorsm). Let f: N -+ M be

transverse to Y on Zh—l = (ngk and without loss of generality
kzh
suppose fihq‘YH. Let xK = (fk)ﬁl(Yk), K ZH, and Xy = W, . Then
K>H

there 1s a G-invardant neighborhood W of zh—l and a proper G-homotopy
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‘of £ rel W _UZH to a map Q/)(Y on ZH 1ff a sequence of obstructions

0 (£K) € HUK /1y Xy > Mg Vay)) vemishes. Here V(H) is a

function of the components of L, The value of V(H) at a component P

ofKHis

V(K), = Hom (wNLN),, w(L, M)y o)

for xePCXH.

Moreover let H ™ be the set of irreducible representations of G,

\J(NH,N)X = E,,axx, v(Y,M)

= E-b x
Jeii H,f(x) X

yeH

where ax and bx are integers, x €C.

D, = Hom, (x,x) 1is a d_w:rjs:.on algebra, dim Dx = dx. Then

V(H) = N.GL(a ,D )/GL(a - b ,D ).
(), = 10L(a, D)L, - b,.0,)

H H

REMARK (1) dim X' = 0 or dim Y - dim M + dim NO
(i1} The cohomology obstruction classes 0,(f,K) should be

undzrstood in two ways; as.components of XH if XH =

noH Ho.J
Ux,, x, € XJ’ X=X f‘XJ. then OyL(L,H) =

1 J H "H
noy .
H J 5
.an (XJ/N(H)’XH/N(H)’"*—lV(H)xJ) and as representations of G
J:

04 (,H) = m.0.(f)
x €t

et X
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g . ) —_ + —
(111) Ir anX' _min 4 (a - b, +1) - 1
*H
5,70
then the obstruction ‘On(H,f) =0 for all n.

Recall that ¢ d4s a cross section of the fibration

FrmC oo 0°F) —>B = CAf

which is a smooth associated vector bundle of the principal burdle
C »B. Iet Z be the zero section Ml ={ve B|wl(V) =0 1is the
meduli space of irreducible cormections, which is perturbed at the

reducible self-dual connections.

let X = Mg,.xo = {MA U open cone neighborhoods at each self-
0
dual reducible connections} M X,

then X\XO is compact.

Now we would like to apply Theorem 6.11. In our case H =G = 22,
Zh—l = ¢, XH =¢, X = XH and by the construction of Mg, the map
b: B> F has a restriction ¥ such that i A 2" throughout X.
Let us consider the obstruction classes on(w) €=Hn(x,x0;wn_l(v(ﬁ)))
where V(H) is a fiber bundle over X. The fiber over x € X is
V(H), = Honi(v(BH,B)K,v(Z,F)H,X) where x is an irreducible G-invariant
self-dual connectlon. Trom the local structure at x =V, TgB = Ker § =

RS g v, for some k. By (6.9), the map ¥: RYov ~RRow is

) 1
splitted as following. For any V€ X\X, and h(7) = g(¥) 1f (hg)® = +1,
lcl+l 1<2+u - kl lc2 5
then y=(Q,d): R @R° Jov,~ ®RIOR @W, 1r (hg)® = -1
k+3 yh2 ey K

e
b= (Q,e)): (R," ®R" )®V, > (R"@®R")@W. Here the sign

I+
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5 4 k2+u
‘means the +l eigenspace of h. If (hg)® = 1, then v (B ,B)X =R_ + (Vl)

k k
v(z,F), = 2@ =R e = ®R1e () e ®R7e ()

ks, E
\,(z,F)H <= (R°® (wl)_)

where (V1 and wl), (Vl 4 and wl +) and (V_ and Vl_) are G-equi-

variant Hilbert space isomorphisms by d?_. Thus the fiber

_ S H
V(H)X = HOIHI_{(\)(B ’B)X’ v(X,F)H,x)
Kk + K,
= Hon®(R° @ (V))_, R°® (W))
(6.12) =lcontractible if dimV _ =«
1
Vi . .
k,+l,k if dimV < =
2 2 -
1
2 H kyt2
If (hg)© = -1, then v(B ,B)x =R @ (Vl)_

Ko
v(Z,F)y = R° @ (W))_

I 1O e B ¢
(6.13) The Ciber V(H)_ = tom (R © ,R 2) is the Stlerfel manirold
x — —

Vl{ ta k0 because we only consider a conpact perturbation.
PR

2
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THECREM 6.14 [28]. The Stiefel manifold V..x is arcwise-comnected
-

and

™

|
o

vV .)=

it'n,k if 1<n-k

n_ (V) ={infinite cvelic proup, if n-k is even or k=1
n-k"'n,k 48 even or

) > Af n-k dis odd and k > 1.

By (6.12), (6.13), and (6.14) we have

THEOREM 6.15. In the bundle V(H) + X, the fiber has the fundamen-

tal groups as following.

{Z;i
m (V) ) = s

0, 1<3, if (hg)?

It
Mo
-
)
=

(hg)

11
|
)

I

+1

where h{x)} = h(v) = g(v).

Moreover if (hg)2 = 1, then the obstructions cohomology class
0,(¥) € H'(X,Xg5m _ (V(I))) = 0 for all n.
However the ocmpact set X C M ? = M gc Ml, end  dim Ml = 5, This

is incorrect because Mi may not be a manifold. By corollary 4.14
M'E is a disjoint unlon of l-dimenslonal manlfold components and 3-
dimensional manifold components which are corresponded by h(v) = g(v)}

(h8)2 =1 or (hgg;)2 = -1 respectively. Thus X = ({xi‘{xi’ where
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“dim x:iL =1, dim XE = 3. If h(v) = g(v), (hg)2 = -1, then the obstruc-

3

tion cohomology classes 03(1p) € H3(X§’,X.30;Z) where XiO = Xi’ NX

i 0-

THEOREM (6.16). To perturb y: B + C =1 QEQ’,’E) G-transversal
throughout a neighborhood of MG

3 .
03(Lp) €H (X,XO,Z).

there are the obstructions

If the cbstructions

03(¢1) = 0, then the G-section ¢ has a smooth
compact G-perturbation R +o

of the self-dual Yang-Mills equations which

is transversal to the zero section throughout a small neighborhocd of MG.




CHAPTER VII

PERTURBATION OF METRIC ON M SO THAT A NETGHECRHOOD
oF M% IS A MANTFOLD

As in the Chapter V, let C = Ck(GL(TM}) be the set of Ckhautomorphisms
of the tangent bundle, G is the group 2/2, CG 1s the G-fixed point set

of C. For a large fixed K, we défine a map
G 2
g1 ¥ O —al{), , by

2(v,4) = P (5 Y'R).

let 7: C +B = E‘/%’ be the projection. M° = m\M° is an open dense

subset of M.

LEMMA 7.1. For each x E'MO there is an open neighborhood U of

x such that for each o € T(C) there exist a + € T(CG) such that
a|U = 1]U.

PROOF. TFor each x € MO choose a neighborhood U of x such that

h(U) U = ¢ where <h> =G. Note o &T(C) = CX(END(TM)) and

T(CG) = Ck(END(TM)G). Choose a cutoff function f: MC - {0,1] such that

63
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£lU= 1 and h(support f) N (support £) = 4. Let 3 = fa, then
hlsup(o)] A [sup(s)] = 4. Since flUz I, o =9 on U. By invarianti-

¥ _ .
zatlon t= I h (g), h(t) = t. We have < EET(CG) such that 1 '=

héG
on U, Dbzcause for any ye€ U

g "

wy) = £ h (G)y) = I hahi(y))
heG heG

= o(y) = oly).

Note that this Lemma 7.1 is true for any finite group G. The
following theorem is one of our main thecrem in this section. To prove
this theorem we will follow [[14], Thm.3.4]. However in our case the
Zero may not be a regular value of ¢ because we replace C by CG.

S0 we should restrict the domain of ¢ to a sultably chosen open subset

of ¢ xCG.

* *
LEMA 7.2. ((24]). Suppose R€ASV ®W and se A2V @ W

*
satisfies (r R,¢) = 0 for all r €ge(V). Then the images Im(R) and

Im(¢) are orthogonal.

THEOREM 7.3. There.is an open G-set ¢ 9£ ¢ x CLI such that

(1) the restriction map ¢: 0 - nf(‘(’}E) 1s smooth and has the zero as

a regular value,

- -

(11) If e(vy) =0, ve M‘G then “_-1(M"u) x {p} <0, where =«: C + B

12 the prajrction, <> =0 = 2

2
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PROOF. It is sufficient to prove the differential 300 0)

surjective whenever ¢(v,¥) =0 for (v,9) € A x & wnere A= “-l(M*G)_
First if ¢(v,¢) = 0 and h(v) = v, then the differential map

S0 4y ) x <m0 ™’ — o2ex)
splits into two pieces
OB ORI @ (%) @ c@p m)° — o)
wnere (5101 (8) = B_(5™'Da), (5500 = BV R)) for a€ ol

and r€ Ck(END TM)G. Show that coker(s¢) = 0. If ¢ & coker(6¢), then

b £ coker(61¢) so that

0= s, (P 'DAe) = 5 (VA0 (8)) = 1 (A7 8)
A - S L A w*(g) MH w*(g)

*
for all A€ nl(%"E) where ¢ = ¢ (¢). Since ¢ 1is continuous we have

¥
the pointwise equation D ¢ = 0. Since ¢ € coker(§,¢),

1% * *
0= e F @R, = (R
g v (g)
for all r e c(enp ™))°.

* *
Since h(D} = D, (v R',}) g = (PR ,0Y) £ - S0
. v (g) v ()

*
0= s (* R",3 + h}) ‘o for a1l r € mm(m%).
v (g
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¥ 9o "
Thus we have (r R',§ + h¢)¢,*(g) = 0 at each point of M. Since

28 = (§+nd) + (3 -nd)

il

(r'R%,n(¥ - 1)) ,

o (g) v @
%
= —(r Rvs‘$' - h:;) *
ARG
*
Thus we have (r*Hv,$ - 13) %« = 0. By adding 0= (r Rv,2$) £ » SO
. v (g) v (B)
(r Rv,zbf) # = 0 at each point x élVlo.
v (g)

Second if ¢(v,¢) = 0 and h(D) = g(D) for some gauge transformation
geff]’, then 02

It

+1 and o(v} = v where ¢ = hg. Again since

¢ € coker §

% %
¢, 0= Jp(r R',3) X where ¢ = ¢ (¢) and for all

v (8)
reckED ™)C since o4 =%, § + 0§ is o-invariant and h-invariant

2
in M

'R,3 , = (or R',08) . = (RL,08) 4 -
v (g) ¢ (g) v (&)

%
Thus we have 0 IM(P*RV,:}; +08) # and so (r Rv,:f +04) % = Q.
. v (e) o ()
As above (r RV,IE:' - o.]T) " = (),
v (g)
) ¥ 9 _ 0
By adding we have (r R ) *( ) = 0 at each polnt xe& M,
P (8

By Lemua 7.1 and 7.2, the images Im(Rv) and  Im(3) are pointwise
orthogonal on MO and s0o on M. At each polnt which Fa‘.‘7 and 'q\b' are

non-zero, one of Rv and ¢ has rank 1. Sketch the rest of the proof.
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4"

.Since Rv is self-dual and ¢ 1is anti-self—dual with respect to the

* * ¥
metric y (g), VR' = v R? = V¢ =V $ = 0. Suppose $ Z 0. let $ #0

and R’ have rank 2 in some neighborhood of a point. Write 3= a® u
where a €0, u€gy with |u| = 1. Then we have vu = 0. By Lemma 7.2
(Rv,u) = 0 also“vzu = [Rv,u] = 0; This cannot héppen for non zero
vectors u and RV on R3. S0 ‘Rv has at most one—dimension. Suppose
F=o®u with lul =1 some oﬁen set. Then vu =0, and the complement
of {F = 0} is connected otherwise V*V + vv* has negative elgenvalues

on a domain. Then we can extend u on M such that vu = 0. But ¢

is irreducible since k =1, F 2 0. Thus we prove $ £ 0 and so ¢ = 0.
Construct an open set 0 of ¢ x CG as follows:

Uy = U{Uv x V¢|¢(v,¢) = 0,hv = v,U : G-set, §¢ is onto on Uv x V&]

Us EIJ{UVIJ Ug(v)jx V¢|¢(v,¢) = 0,h(v) = g(v), leJ Ug(v): G-set, 8¢ is onto}

Set ¢ = Ul L1U2. Then by construction 0 is open G-set and the restric-
tion map ¢: 0 » ¢ x CG -+ ﬂEC}ﬁ) has zero as a regular value,

We consider the following diagram

qf'l(o) C s0e—s¢ x¢© —¢—->QE(°O[E)

1" \n w| X id
v

v v

¢_l(0)"3“‘>0’°& —>B xC

-«
=2
-
Y
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The set ¢ +(0) is a menifold in ¢. For each metric v e % the

;G in the moduli space M;

because M;,G = {(v,p) € C x {w}{e(v,9) = 0, (V) =vor hiv)= g(v) /4.

fixed point set ‘M is contained in ¢ +(0)Af

This completes the proof of the Theorem 7.3.

LM 7.4, "0/ €0/¥ is a manifold.

FROOF. First clearly 0/ is a manifold by the slice theorem.

For any (v,¢) € ¢"1(O) C 0 we have a neighborhood U‘7 x V¢ < Cﬂ x CG.
Since TC = szl(gE) = Ing ® Ker v and §10)pp = 0, the differential
§3: 0/% + QE@E) has the same image of &§¢ on 0 » QE(%). Thus the
induced map ¢: 04 gf(gLE) has zero as' a regular value. We éomplete

the preof.

ILEMMA 7.5. 'The projection ¢_l(0)/‘} 5¢% is a Fredhoim map.

PROOF. We consider the construction of 0 ¢ CA x CG. The differen-

tial 6u: T(V,¢)(¢'1(O)/¢g) = {(A,r) € Ql@E) x TCG|61¢(A) +6,0(r) = 0

# - *
and v A =0} » Ck(END('I'M))G. Since Ker v = {(A,r): 51¢(A) =9 A=rpr=0}=
HE and Im 67 = (s -b)_]'[ln'.ns | «) = (§ ») U Im §,0]. He have
v 2 1 2 1

Kerv
coker &n = Hg because 6¢(v s) Is onto. Since v 1s irreducible self-
dual, Ind r = index of the fundamental elliptic complex for v = Hé; - Hg

has a numerlical Index 5.

Now we use the Sard-Smale Theorem for the Fredholm map w: ¢"1(0)/‘}’+ c®
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between paracompact Banach manifolds. There is the set of regular

values of 7 which is an open dense set in CG, because dim(HE) is

an upper semi-continucus integer valued function on ¢~l(0)/3£ If ¢ - is .
a regular value, then « _l(¢) is a manifold with dimension 5, which is

a neighborhood of MéG in MA with respect to the G-invariant metric

¢
%
¢ (g) on M.

THEOREM 7.6. There is an open dense set in CG such that the moduli

space M  of irrational comnections is a manifold in a G neighborhood

of MAG for each metric-in the dense set.

Iet ¥ be a reducible self-dual G-invariant cornection in M. We

have a bundle splitting E =2 ®1 and so o = R® n. Also we can split

the complex:

0 —-—790(3E) —-V-—JvnlgE) V_>93(00(E) —>0

d D
s (0 >0 —9ugl —50% )0 —=2°(n) L5 oXn) —> 2% (n) —0)

As Theorem 7.2 the main differences between [14] and our case are
o]
that (i) We should consider separately h(D) = g(D),(hg)” =1 and
;"(hg)2 = -) where g act on n with weight 2.
To prove the map Q: nl(n)\o x CG - Qo(n) E)Qf(n) given by
* 1% ¥ -1
(A,¢) (D ¢ " A,P ¢ ~ DA) 1s a submersion throughout Q (0), we should

use the condition (1) as Theorem 7.2 because we restrict to the G-invariant
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metrics CC. Then () is a manifold. The projection =: Q 1(0) - c©

-has index 6 by considéring the splitted complex. Again using the Sard-

Smale Theorem and the upper continuwity of dim H%, we have

THEOREM 7.7. There is an open dense set in CC such that the second

cohomology group Hg'ﬁ 0 in the fundamental complex of each G-invariant

reducible connection. v in M.

Since the finite intersection of open dense sets in CG is also an

open and dense set in CG. -Finally by the Theorem 7.6 and 7.7, we have

THEOREM 7.8. There is a dense set in the set CU of G-invariant

metrics on M such that the moduli space M is a manifold in a G-

nelghborhood of the fixed point set MG for each metric in the dense

set. Moreover for these metrics Petrie obstruction classes vanish.

- 72
REMARK. In Theorem 7.2 if we do not restrict the map ¢: C «x CC-+Q_(§% ),
then the zero may not be a regular value. In Theorem 7.7, if we do not

choose a G-invariant reducible connection, the map Q may not be a sub-

mersion., So we need G-equivariant coupact perturbation at the fywe part

. to get G-manifold M. More generally if G is a finive cyelic greup

of order 2“, then we can follow Theorem 7.2 by considering the order e

and in case h(V) = g(v) the element (hg) has amain order 27 tor

Scme m < n.
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THEOREM 7.9. If G 1is a finife eyclic group of order 2“, then

there is a dense set in the set CC of G-invariant metrics on M, such

that the modull space M 1is a manifold in a G-neighborhood of the fixed

point set MG for each metric in the donse set.

. * n— )
SKETCH OF PROOF. As Theorem 7.2, (r R',§ + h§ +e+ot B L) « =0
% rn-1 n v (8)
and (£ R,§ - h§ +eeet h®  §-c-e=h® 1F) , =0. Add and divide by
21'1--1 (Y (g)

. v
2, (r Rv,?ﬁ + h2¢"'+---+ h ¢+ -++) = 0 continue this process, we have

* n-1
(R, +h° 8, =0
v (&)
* 1‘1—1
R, -0 §, =0
v (2) :
S0 we have (r*Rv,%') *( ) =0. If h(v) = g(v), g # +1 and v is
y g

n n n
irreducible, then hg(v) =9, (h,g)2 = 1'1,gh2 '—1. h2g1”12 "2---g =+ 1. If

h{v) = g(v), g ¢ I, and Vv is reducible, then hg = gh for some g) € Ty-
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CHAPTER VIIT
PERTURBATION ON THE FREE PART OF M

In the Chapter VII, we found a G-invariant metric on M such that
the modull space M 1is a manifold in a G-nelghborhood of the fixed point
set M'. We will fix this G-invariant metric on M. Then the map
BYsF=C x‘y_nf(‘}E) is the Fredholm G-map which is transverse to the
zero section throughout a G-neighborhood N(MC) of the fixed point set
. et v = MG U End of M. |

Then Y 1is a compact subset of M and M\Y is a smooth 5—dimensional
manifold with some singular points. For each V€ Y we can choose 2 local
coordinate OV-e = (A€ Q%(?%)]GVA =0, [[All < e} if v is irreducible,
otherwise OV'E/U(I)-iS a local coordinate chart at ¢ such that
h(Ov.E)tﬂ Ov_e = ¢ where h 1s the generator of G = ZE' To see the
local structure of the map g¢: B = C/3f+ F=2¢C mz;nfﬁ§t) and the rsiz-i-

with G-action only, let us consider the following diagram.

\ 5
V. =1 < = '
Vg ¥V, =V D0, —(—"—W v SNERN R

t t = ! 2 = 1! v
Vy o+ VL= h*‘(V) 2 n(0,, ) WQ_(‘}E)MV) Wy @ WY

72
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Since ¢ is a G-map, above diagram commutes. Since ¢ is a

Fredholm map with index 5, ¢ becomes locally ¢ = (Q,L): Vo ® Vl -+ WO @ wl

by some G-equivariant diffeomorphism where Q,L are G-maps, leIV =
: . 1

L|_ : V, + W, is a Hilbert space isomorphism, Q| : v, = RS2(C*3) 5w

vy 1 1 Yo 0 i 0

le(ck) is also G-map with dQ = 0." (if v is reducible) (c.f. F.U.

tit

Lemma 4.7). Since h is diffeomorphic, we can locally identify h with

its differential at the origin V. Let dv,b,‘.7 = Ll’ dlph(V) = LZ' Since

yh = hy we get L

21'1 = hLl" Since VO is the kernel of L

1 and Ll: V1+W1

is an isomorphism

L2[hV0] = h[LlVOJ

h(0) = 0, so 'h(vo) € Ker L,

iso
N

h(Vy) % h(i,).

h(wl), so L,:

L(hv,] = h{L,V,] X

Thus we have the canonical splitting ¢ = (Q2,L2): h(VO) @ h(Vl) +
h(wo) @ mwl) at a neighborhood of h(v).

LEMMA 8.1. For each V&€ Y the generator h € 22 preserves the local
. splitting of the Fredholm map ¢: B -+ F.

With these preliminaries let us perturb ¢ on Y € M. Suppose
that v € Y is reducible. Then h{(v) is also reducible. Using our

usual compact G-invariant perturbation o: OV‘E -+ QE("]E).




We have a new section ¥ 7 \p+ v: B + F which transverse to the zero
section throughout OV’E. Definf.-_ a perturbation on h(Ov ’E) by o(h(4)) =
ho(A), We have a G-equivariang séction Yo = ¥ * o2 B> F which ‘transverse
to the zero section throughout ov c U h(ov ). Since this is a compact
pérturbation if we mod out the zero set at v by U(l), then this reducible
comection has a neighborhood which is a cone on Cp2. Adding such a
perturbation at each reducible connection in Y, we have a section

¥t B + F which transverses to the zero section near the reducible connec-

tions in M; = {v€B|ap3(§r) = 0}. Thus we have.

LEMMA 8.2. Suppose that v € Y is reducible. Then we have a G-

equivariant compact perturbation of ¢ sSo that M, has a cone-nelghbor-
1

hood on Cp‘2 at  v.

Let Yl = Ml - {N(MG) U End of Mu([cones on Cp2 at reducible

self-dual connections]}.
let v € Yl be irreducible. Yl is compact. The Frehold map ¥y
. - ) - 2 -
is locally splitted; V3 = (Q,L): ov,E CV=V,0V, n_(%:E) =Wy @ ¥y,

where L =dyy: V) + W, 1is a Hilbert isomorphism, Vj = R, w, = &Y,

and every map is G-map and every space is G-space.

Choose a smooth cutolf function o & CU(OV E) and conulider the
3
family of perturbations o pew: 0 - Rk C Qa(? ) for each
W v, v -R

w € Rk = wo. As above extend the perturbation by h(owA) = nhw(hA) on

h,w oK 2 . K
h(Ov,E) MH}](V) C Q—@E)h(v) for each hw & R‘n(v) (ef. Lemma 8.1).
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_Considefing the G-map QVIR$+5: F¢+5 > Rlv( we have a ilnmediate conse-

guence -

LFMMA 8.3. w € F% is a regular value of Q! 1¢+5 - Rl‘; if and only
if hiw) € Rﬁ(v) is a regular v;iiue of Qh(v): tlé) Rﬁ(v).

We can cover the compact set Yl with the supports of a finite
numbers of such perturbations. We get a family of perturbations

Uy = gt oy +chwl Fereenot O’Wn'l'ohwﬂ for each w = (W ,*+-++ W)€

k
R 1x.-......xR18’l :Rm.

We may assume that the supports of the perturbations lie in a small
m
neighborhood of Y- let a smooth mapping T: B+B (n) + F be defined by

P(x,w) = g (x), where B'(n) = tw R': j[wf < n).

LEMMA 8.4, For small n > 0O, this mapping ¢: B x B™n) » F- 1is

transversal to the zero section Z C F.

PROOF. Suppose that (x,w) € B x B™(n) such that ¥(x,w) = 0
(1) if x ¢ support of .pi for all i, then 'n};'(x,w) = -1;3(:() = O,QI is
transversal already by our constructions.

(1) 1if x € support of Py for some i, then x € supp py C 0‘7 .
s o€

oW )

Write $(x,w) = ¢3(x) to(x, W) + o vy Wy o= (g ee i

where o(x,W;) = I o (x) 1s uniformly closmall,
i 17 vy
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‘This is guaranteed by choosing n - small after covering with a finite

number of coordinate charts.
d(lp3 + o)xz V= VO @ Vl >+ W= WO 3] wl willl still be transverse to

k, p.xid k

\ . K,
wl. Also 94 is the map Rk+5x“Ri—j;—-—-;-Rle sca.la_rmultn}Rl

which has clearly surjective differential. Namely the w;—spaces carrled

onto WO .

Hence the total differential is surjective. i.e. y A Z.

' i = 4 o0
By Sard's theorem for families, the map by l]J3 + le + °hw1 +
m
0, + Oy is transversal to the zero section for almost all we&€ B (n).
n n

LEMVA 8.5. ¢, B+F disa G-map.
PROOF. If A ¢ supp p; for all 1, then h(A)¢ supp o, for all
i and ‘JJw(hA) = q;3(hA) = h¢3(A) = hy (A). If A€ supp py for some i,

then A € supp oy C‘-‘OV.e and h(A) € h(Ov.E). By our construction

=
=
Cand
23
x>
A
]

03(0A) + o, (RA) + op, (RA) +e-¥ o, (BA) + 0

(hA)
1 1 n hwn

u

(A) + ho (A)

hlb3(A) + hohwl(A) + how (A) +--+ ho . ]

1 hw

i1

h[lfJB(A) + g, (A) + o, (A} ++v--+ g y (A) + S (A)]

huy ] 1 h 1 n

1l

hww(A).
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THEOREM 8.6. There is a compact G-equivariant perturbation oy =¥

3

of the perturbed self-dual eguation ¢3 =R + Ul so_that the new moduli

space M2 = {yeB: wh(v) = 0} is a smooth 5-dimensional G-manifold with °

_ A-singularities, each of which has a neighborhood diffeomorphic to the

_ 2
cone on Cp2 except the cone point where A = rank H (M:Z).

+ 0

2




CHAPTER IX
MORE INDEX COMPUTATION AND REDUCIBLE CONNECTIONS

let G = Zp where p is a prime number. Iet M be a simply connected s
closed, smooth 4-manifold with a positive definite intersection form, and a
smooth G-action on it. Leﬁ lw: E + M be a quaternion line bundle with
instanton number oné and with G-action on E through bundle isomorphism
such that T is a G-map. The moduli space M of self-dual connections
on E 1is a G-space when we start with G-invariant metric on ‘M. This
moduli space M may not be a manifold. As before we may choose a G-
invariant metric on M such that the fixed point set MAG in the space
ﬁ of irreducible self-dual connections is smooth. In this chapter we
will compute the G—iﬁdex of the fundamental elliptic complex for each G-
invariant connection in M and we will investigate reducible connections.

Assume that the fixed point set F of G-actionon M is

k Ai k2

1

- 3 1 . it
F {Pi}i=l u{T }i=l where the Pi 8 are isolated points and the T S

are Rlemann surfaces with genus Ay
Again consider G-invariant elliptic complex (i.e. the self-dual

comection V 1s a fixed point in the moduli space M).

v v
d d’
0 —— QO(?C) T nl(‘ﬂc) — nf(‘?c) —>0.
' 6

78
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- Assume this complex is complexified. Then as usual we get an

equivalent single Dirac operator:

D: 1(V, ® V_ ® F) —>T(V_ dvV_07F,).

2nl
: = n
let K={¢P 1n=0,1.0".- p—l} be the character group of G.

In the complex representations which is just the p-th roots of
2ni

the unity. ILet g=-e P be a generator of G and let Vv be an irre-
ducible self-dual G-invariant comnection. Then the analytic G-index of
D 1is a virtual representation of G, namely Index,(D) = Hl(ﬁ'c) - Hz(%"c) €

R(G). By Atiyah-Singer Fixed Point Theorem, we can compute the index

Jain eh (V,=V_Jeh (V) (&, )td(TieC)

Index (D)
g ch( a M@ c)

trace(g indexG(D)) = (-1

dimi® '
2 ehy (V,=V_)eh (V_)eh & ta(mf @ C)

L

It

(M)
e(fmg)chg(f\_lNg ® C)

To calculate cthﬂé) let us examine g action on:}c. Consider a diagram

P
2 SU(2) m H
E // su(2)3“(2) = ZE F.ec Ilmg
M < B

™E]




/,,_ﬂmrﬂwm%—haw

To preserve the Su(2)-structure on E|

(21,
e P

0 e p

on E|.
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Ivﬁ,

g

acts as

principal bundle P. On the associated Lie algebra bundle

8% =P XSU(E)Su(z)’ G acts by conjugation, i.e.

So G acts trivially on g and gC = OJE @ C. Thus in our case

cthﬁ%) = 3.

The contribution to the Indexg(D)

2nr,

let 6. = —% ¢

1 . p,...

2

— 2rnik -
e P 0
2ni(g—k)
0 P
e
— -]

2ns

i

, ‘hormal bundle at P, In M.

ch (V,=V_)eh (V)

chy (A NE x ¢

1

2
it
t=

1 .
- é (l + cot

1

iOt

—iGt

-10

£

e 2

]
- e

Ye 2

(1-e

ig,
£y(1-e

wr
1

—1Gt)

L)

cot —=)

p

for some k and so on its associated

represent the representation of g on the

ac an isolated fixed point PiEIR
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Thus we have

3 ( ’"'l"_,L 1TSi
Tddex (D = -~ = (1 +4+ cot —=cot —
g Py 2 7 p )

Next the contribution to the Indexg(D) on a fixed point éomponent

by P .
rlcy CM where T & 15 a Riemann surface with genus Ay, Let g

2ﬂiti

A

act on the normal bundle of T -in M by e P ~-mtiplication on

the fibers.

Xy —xl _xl x2 niti —xz—niti —x2 —niti

: enit,
— 5 5= —= - C T
chg(V;—V;)chg(V;) ) e2 —e2 )e 2 (e 2e p _e2 e P e 2 e P [ex1+e 5 ex2]
' Xy (1-e 2e P y(1-e 2e Py
et 2rity 2mit, 2ni
X, X B — p p P
+x_+
e 1+e 2 o P o 1xq (l+x2)e i QL +e ) + (x1.+ e x2)
2nit, 2rit, 2nit, 2nit,
x i i i 1
(1-e % P ) 1 - (l+x2)e p (L-e P ~-e P x2)
2“iti 2wit1 2niti
p
= """2%‘1%" e PHr+Gyre P x) [1+S 7 x]
i i
(1-e P ) i1-e P
onit 2Triti Qniti
E p ) P
- 1 P (1+e e
2nit, [x, + e Xt 2nit, %51
(1-e P ) (L-e P
i 2Hiti '
_ 1 2¢ P
T TEE, M) R v 1o 2
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Here we only consider degree one part because, when we evaluate on
Al
the fundamental homology class [T 1], the other parts are all zero.

Xy and X, are the Euler classes of the tangent bundle and the normal
A

bundle of T i in M réspectively. We can calculate x2[T =m
. -Ai T
and xl(T ) =2 - 2Ai

A

ch (V,~V_en (V_)eh Lt ec) i

Index_(G) = (~1) [T ™)
g Ay &
T e(T®) ch (A .N® ® C)
g -1
2ﬂiti
= "3[“—"‘—1-———-x + 28 P % ][Tki]
2uit. 1 2nit, 2
i i,
(1-e P ) (1-e ° )
2niti
_ 1 2e P A
= -3 Ewiti + 2niti T "]
p JR B
(1-e ) (1-e ) emit,
(1 - Al) + (m1Ai - 1)e P
= -6[ 1 ]
2niti )
(1-e P )

Hence we have

k2

Index (D)}, + I
1 g8 Py

nes x
E_l

(9.1) Indexg(D) = Indexg(D)l A

1 P

i




where n = 0,1,-+++p~1 and ry> Sy» ti are determined by representations

on the normal bundles of the fixed point set in M.

REMARK: (1) In the index calculatién, td(P@C) = 1+ -]2-‘ cl(Tg ®C) = 1.
(11} Above Indexg(D) is the topological index of D evaluated at
g. If we know the exact data, namely the flxed point set,
Zp—representation on the normal bundles and its Euler numbers

then by the formula (9.2) we calculate explicitiy the topologlcal

index.

(1i1) For example G = 2y, F ='{P,52} C Cp2, g = -1. By (8.2)

83
1‘cl 3 T, s,
'-El (~ -2-) (1 + cot —p-; cot —'-p;l-)
+ 2Tit
it §
- - P
k, (1 Aj)+(@ J\j*i-)\j e
' T
—5
For g° GEZp we can calculate the index as (8.2)
THEOREM G.2.
| 2n;it1‘
(1-x )+(m ., +r,-1)e
kl 3 nary NS, k2 J T}i J
Index (D) = I (- 3) (Itcot cot —=) + ¢ (-t} [ =
g i=1 P P =1 i)
P
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kl 3 wri TS,
Indexg(D) = iil - §) (1 + cot T cot .p_)
2nit,
P
K, (1 —-Aj) + <H}}J + Aj - 1l)e
010 STt 1
Jj=1 j
p 2
1-e )
P L (1-0) + (1+0-1)(-1)
= (-30+0)+ z (-6) 5
i=1 j=1 (1~ (1))
= -3

(iv) For simplicity these topological index

Agaln, from the G-invariant fundamental elliptic complex. Let us

consider the G action on the virtual representation H% - HEEE R(G) of

the cohomology groups. Let us split H% and Hs into the irreducible

decompositions
=ity et @ n’ L and
g g
amt
ilv2=H2o®H21@‘---@H2 where g=¢? € @




85

ami

acts on ij (j = 1,2) by the complex miltiplication e P - Let
g

dimcH% = m, d:i.mcl'ili =m,, di"t—Bf, =n and djmcHzi =n. For each
: g

g
gl €0 ~we have the indices

]/

Indgo (D) (mo'i‘ml+- Tar e o+m ) - (n +n JERPO .+np._.l)

2 i ) 2 2ni
= p LI ) p — .- p
Indgl(D) (mo-f-mle + +mp_le ) - (n +nle + +np_le
(9-3) ani 2ni o ori , ari
=3 p " va p — p ‘e p
Indgz(D) (m0+m1e + m,_je )-(nyinge + n, e
Sp-1) 231 %(p—l) .
+ ‘. - e =
ndgp_l(D) (m m e +- +mp 1€ )= (n ne + +np_le )=B
s

Rearrange these equations to compute (m0 - no), (ml - nl),--- and
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(mo - no) + (_rn1 - nl) deaeet (mp_1 - np——l) = B0

(mO - no) + (mn - nl)e Feaed (mp—l - npu-l)e = Bl
(9.4) :
NS S Tp-2)

(mo - no) + (rn1 - nl)e +oeact (mp_1 - np_l)e = 132

’ %’?— (p-1) ‘2;%

(m0 - no) + (m1 - ny)e oot (rnp_1 - np_l)e = Bp_’1

Using the fact 1 + e taeect = 0. Except the first row and

the first colum, each row and each column are permutations of the group

G. For 0< k< & <2 <p-l,

gri 2ml o 2ni (p-1)k 2ri (2,k) 2ni 2'(2_3)
G E{I:ep :ep‘ :"'sep } = {laep :ep PR |
2L (p-1) (2k)
e }

By easy calculation we get

--b = +B +l-o-+B—.

1 2 p 1)

Tl

(B0 +B

ELETENR 2rden,2) anl

(BO+Bep +Be P +...4 B p)

(9.5) Jm) - ny = 1 2 p-1°

kel b

2ri erl 3 2ni

_ 1 P p ¥
= =(B, + B.e + B,e 4+....+ B g
-1 p( 0 iR 2 p-1 )
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2ni

REMARK: (1) For a prime mmber p, g=e P € G, the fixed point
2 -1 k A k
set on M, F =M =1 =1 SRR {Pi}iiuﬁ‘l}izl

(i1) the topological index B, = 5, B se»++,B, ) is determined by
the formida (9.2), and the virtual representatoon dimensions

my = ng (i = 0,+++,p~1) is determined by Bn,+-+,B

0 -1 and the G-

action on them as (9.5).
(1ii) For reducible self-duzl connections we replace m, + 1 instead

of m0

(iv) my - ny = % (By + By heeeet Bp—l) 1s the dimension of fixed

point component containing v.

Next we would like to consider a Zp‘ action on reduqible self~dual
comections., Under our usual assumption on the bundle E + M. We consider
the space H2(R)‘ of real valued harmonic 2-forms on M. Harmonic 2-forms

means dg = 0 = 8 where & = —¥d¥, Since &% = A¥ HZ(R) = Hi G*HE.
Every harmonic 2-form is self-dual since the intersection form is positive

definite. Also self-dual connections are harmonic. For each reducible
v
cornectlion v = vl G)Vl on E, the assignment v 10 1 gives a

one-to-one correspondence between . gauge-equivalence classes of reducible
cornections on E and pairs of closed 2-forms iﬂvl with anvl,\nvl =1,
where Qvl = E%I va. Since M 1is simply connected, the de Rham classes
Qvl are uniquely determined by the integral classes in He(M:Z). Also

every integral class u with u-u =1 comes from a reducible self-dual
.|_ -
connection. OQur manifold Ml = Cp2 Hooood Cpa {n~copies).

- ces = 2m. o
Let {ibl, jbn} be a basis with bibj Gij In H"(M:Z). For
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' , ¥
any g ezp, g 1is a diffeomorphism on M. So ﬁg8b1,----ig bn} is

also a basis in Hz(M:Z). In the moduli space M there are reducible
v

self-dual connections {v,,---v_} which corresponds b, = L R 1 for
1 n o1 241
v v, gv,)
.o ¥ 0 _ ¥ 7] i_ 1 i-1_ 1 i
1=1se++,n. Morgover g bi =8 71 R~ = o g =357 R

which is the curvature from corresponding the comnection g( vi). Since

g(v,)
g 1s an isometry on M, R

is harmonic and the integral class
* * * *
g bsg bi =g (bi-bi) =g (I) = 1 where bi'bi is a generator in

Hu(M:Z). By definition this is the orientation class. Thus g(vi) is

a reducible self-dual connection.

THEOREM 9.6. Zp-action on E ~+ M induces a action on the set of

redugible connections in the moduli space M of the self-dual gauge

v
equivalent connections. Morecover let M = the set of reducible connections

1 .1

in M and by setting Vv I—e—m R where Vv = Vl + vl, the diagram

HO(M:Z) —B— Ho(M,Z)

.

v
4\'1’ ‘ B M  commutes.

REMARK. (i) Suppose that v 1is a reducible self-dual comnection.

‘g é?]gvg_l =9} = s*. For any

s* because (h;‘,_:h_]‘)-h(V) = l\gh_]‘-

i}

Then the lsotropy group of v, rv

") < g le g jger”)

h€zZ , T
P

have Tt = hv).  Also hg h ™t = hg =g =g,

o

il

hoh T ehg tht
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Since Zp preserves the self-duality, h(v) is also a self—dual
reducible connecfion.
(ii) ©On the Zp-action over E ~ Mu and h € Zp. let ble H2(M=Z) with
brby = 1, then there is a complex line bundle I, - M with its

1
Euler class bl‘ And consider the map

% ¥ 0 >
h Lb E—— Lb 5 h : H°(M:2) —— H (M:2)

boL

—_—_— b

*
L E—— (bl)

*
The induced bundle h (Lb Y over M 1is exactly the bundle corresponding
1

reducible self-dual connections v and h(V)
' = (g€ Fle(v) = 9} = s ¢ +

7 {hgh—lge I‘vl = shc J and

e' 0
g = ( _15) € V. From the bundle splitting the following diagram
0 e

commites and preserves the splittings.

) - h .
Befy @L i) @D

£ hg |h >

h, @0, — L0y @ Lyl
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